The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.165003DOI Listing

Publication Analysis

Top Keywords

vertical magnetic
12
magnetic field
12
particle confinement
12
confinement magnetized
8
magnetized plasma
8
plasma torus
8
confinement time
8
effects vertical
4
field
4
field particle
4

Similar Publications

Unveiling the electrochemical nitrogen reduction reaction mechanism in heteroatom-decorated-MoCS-MXene: the synergistic effect of single-atom Fe and heteroatom.

Mater Horiz

January 2025

Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.

Conversion of nitrogen (N) to ammonia (NH) is a significant process that occurs in environment and in the field of chemistry, but the traditional NH synthesis method requires high energy and pollutes the environment. In this work, the charge, orbital and spin order of the single-atom Fe loaded on heteroatom (X) doped-MoCS (X = B, N, O, F, P and Se) and its synergistic effect on electrochemical nitrogen reduction reaction (eNRR) were investigated using well-defined density functional theory (DFT) calculations. Results revealed that the X-element modified the charge loss capability of Fe atoms and thereby introduced a net spin through heteroatom doping, resulting in the magnetic moment modulation of Fe.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is often diagnosed at an advanced stage due to the lack of non-invasive early detection tools, which significantly impacts patient prognosis. Given that glycosylation alterations especially high sialylation and fucosylation, frequently occur during cellular malignant transformation, but their roles are not elucidated. We examined alterations in disease-specific glycosylated extracellular vesicles (EVs)-derived miRNAs in the serum of ESCC patients, evaluating their utility as diagnostic biomarkers.

View Article and Find Full Text PDF

Objectives: To review the currently available Clinical Practice Guidelines regarding the diagnosis and management of Cytomegalovirus (CMV) infection in pregnancy.

Methods: Medline, Turning Research into Practice (TRIP), Web of Science databases and scientific societies' websites were searched electronically up to April 2024. We included national and international Clinical Practice Guidelines regarding diagnosis, treatment and follow-up of CMV infection in pregnancy, published in English language.

View Article and Find Full Text PDF

This research presents a numerical study over the unsteady natural convection of an electrically conducting fluid in an open-ended vertical parallel plate microchannel under uniform and asymmetric heat flux subjected to a uniform lateral magnetic field. Slip velocity, as well as temperature jump at channel walls, are modeled using a first-order model. The effects of Knudsen number)(, heat flux ratio)rq(, Grashof number)(, and Hartmann number)M(on mass flow rate, the maximum temperature of the wall, and average Nusselt () as a function of time are discussed.

View Article and Find Full Text PDF

The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!