The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.157207DOI Listing

Publication Analysis

Top Keywords

soliton trains
16
spin wave
12
generation dark
8
dark bright
8
wave envelope
8
envelope soliton
8
dipole-exchange spin
8
soliton
5
spin
4
bright spin
4

Similar Publications

Preparation of amorphous silicon-doped YO aerogel enabling nonlinear optical features for ultrafast photonics.

Nanophotonics

April 2024

School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.

Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.

View Article and Find Full Text PDF

Two-dimensional flat-band solitons in superhoneycomb lattices.

Nanophotonics

September 2024

Departamento de Física and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, Lisboa 1749-016, Portugal.

Flat-band periodic materials are characterized by a linear spectrum containing at least one band where the propagation constant remains nearly constant irrespective of the Bloch momentum across the Brillouin zone. These materials provide a unique platform for investigating phenomena related to light localization. Meantime, the interaction between flat-band physics and nonlinearity in continuous systems remains largely unexplored, particularly in continuous systems where the band flatness deviates slightly from zero, in contrast to simplified discrete systems with exactly flat bands.

View Article and Find Full Text PDF

This study explores the Ivancevic Option Pricing Model, a nonlinear wave-based alternative to the Black-Scholes model, using adaptive nonlinear Schrödingerr equations to describe the option-pricing wave function influenced by stock price and time. Our focus is on a comprehensive analysis of this equation from multiple perspectives, including the study of soliton dynamics, chaotic patterns, wave structures, Poincaré maps, bifurcation diagrams, multistability, Lyapunov exponents, and an in-depth evaluation of the model's sensitivity. To begin, a wave transformation is applied to convert the partial differential equation into an ordinary differential equation, from which soliton solutions are derived using the [Formula: see text] method.

View Article and Find Full Text PDF

In this paper, the thin-film ferroelectric material equation which enables a propagation of solitary polarization in thin-film ferroelectric materials, and it also can be described using the nonlinear evolution equations. Ferroelectrics are dielectric materials explain wave propagation nonlinear behaviors. Thin films made from the ferroelectric materials are used in various modern electronics devices.

View Article and Find Full Text PDF

Stabilized 30 µJ dissipative soliton resonance laser source at 1064 nm.

Sci Rep

November 2024

Laser Spectroscopy Group, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland.

We demonstrate the first successful stabilization of a dissipative soliton resonance (DSR) mode-locked (ML) laser source using straightforward techniques. Our setup employed a figure-8 (F8) resonator configuration and a nonlinear optical loop mirror (NOLM) to achieve stable mode-locking, generating 1064 nm rectangular pulses with a 3 ns duration at a repetition frequency of ~ 1 MHz. The pulses were boosted in an all-fiber amplifier chain and reached 30 µJ and 10 kW peak power per pulse at 30 W average output power.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!