Navigation in a small world with local information.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, Nanjing University, Nanjing 210093, China.

Published: September 2004

It is commonly known that there exist short paths between vertices in a network showing the small-world effect. Yet vertices, for example, the individuals living in society, usually are not able to find the shortest paths, due to the very serious limit of information. To study this issue theoretically, here the navigation process of launching messages toward designated targets is investigated on a variant of the one-dimensional small-world network (SWN). In the network structure considered, the probability of a shortcut falling between a pair of nodes is proportional to r(-alpha) , where r is the lattice distance between the nodes. When alpha=0 , it reduces to the SWN model with random shortcuts. The system shows the dynamic small-world effect, which is different from the well-studied static SW effect. We study the effective network diameter, the path length as a function of the lattice distance, and the dynamics. They are controlled by multiple parameters, and we use data collapse to show that the parameters are correlated. The central finding is that, in the one-dimensional network studied, the dynamic SW effect exists for 0

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.70.036117DOI Listing

Publication Analysis

Top Keywords

lattice distance
8
network
5
navigation small
4
small local
4
local commonly
4
commonly exist
4
exist short
4
short paths
4
paths vertices
4
vertices network
4

Similar Publications

Structure of blood cell-specific tubulin and demonstration of dimer spacing compaction in a single protofilament.

J Biol Chem

December 2024

Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:

Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the post-translational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood.

View Article and Find Full Text PDF

LiTiO (LTO) batteries are known for safety and long lifespan due to zero-strain and stable lattice. However, their low specific capacity and lithium-ion diffusion limit practical use. This study explored modifying LTO through yttrium doping by hydrothermal method to form LiYTiO nanoparticles.

View Article and Find Full Text PDF

Lattice-based mean-field models of ionic liquids neglect charge discreteness and ion correlations. To address these limitations, we propose separating the short-range and long-range parts of the electrostatic interaction by truncating the Coulomb potential below a fixed distance that is equal to or slightly larger than that between neighboring ions. Interactions and correlations between adjacent ions can then be modeled explicitly, whereas longer-ranged electrostatic interactions are captured on the mean-field level.

View Article and Find Full Text PDF

Compressive interatomic distance stimulates photocatalytic oxygen-oxygen coupling to hydrogen peroxide.

Sci Bull (Beijing)

December 2024

School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China. Electronic address:

Photocatalytic hydrogen peroxide (HO) generation is largely subject to the sluggish conversion kinetics of the superoxide radical (O) intermediate, which has relatively low reactivity and requires high energy. Here, we present a lattice-strain strategy to accelerate the conversion of O to highly active singlet oxygen(O) by optimizing the distance between two adjacent active sites, thereby stimulating HO generation via low-barrier oxygen-oxygen coupling. As the initial demonstration, the defect-induced strain in ZnInS nanosheet optimizes the distance of two adjacent Zn sites from 3.

View Article and Find Full Text PDF

Background: Existing software for comparison of species delimitation models do not provide a (true) metric or distance functions between species delimitation models, nor a way to compare these models in terms of relative clustering differences along a lattice of partitions.

Results: Piikun is a Python package for analyzing and visualizing species delimitation models in an information theoretic framework that, in addition to classic measures of information such as the entropy and mutual information [1], provides for the calculation of the Variation of Information (VI) criterion [2], a true metric or distance function for species delimitation models that is aligned with the lattice of partitions.

Conclusions: Piikun is available under the MIT license from its public repository ( https://github.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!