Nonmagnetic microspheres confined in a ferrofluid layer are denoted by magnetic holes. They form aggregates due to dipolar interactions when an external magnetic field is exerted. Their cluster-cluster aggregation was studied for various magnetic fields using optical microscopy, both for small spheres of diameters, d=1.9 and 4 microm, for which Brownian motion was important and for large spheres of diameter, d=14 microm, for which Brownian motion was not important. The results for the two smaller sizes were in agreement with standard dynamic scaling theory and the dynamic scaling exponent z for the average cluster length S(t) approximately t(z) was found to be slightly smaller than 0.5, while for the largest spheres the z exponent showed a strong dependence on the magnetic-field strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.70.031504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!