Role of tyrosine 441 of interferon-gamma receptor subunit 1 in SOCS-1-mediated attenuation of STAT1 activation.

J Biol Chem

Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

Published: January 2005

Suppressor of cytokine signaling (SOCS)-1, the key negative regulator of interferon (IFN)-gamma-dependent signaling, is induced in response to IFNgamma. SOCS-1 binds to and inhibits the IFNgamma receptor-associated kinase Janus-activated kinase (JAK) 2 and inhibits its function in vitro, but the mechanism by which SOCS-1 inhibits IFNgamma-dependent signaling in vivo is not clear. Upon stimulation, mouse IFNgamma receptor subunit 1 (IFNGR1) is phosphorylated on several cytoplasmic tyrosine residues, and Tyr(419) is required for signal transducer and activator of transcription (STAT) 1 activation in mouse embryo fibroblasts. However, the functions of the other three cytoplasmic tyrosine residues are not known. Here we show that Tyr(441) is required to attenuate STAT1 activation in response to IFNgamma. Several tyrosine to phenylalanine mutants of IFNGR1, expressed at normal levels in stable pools of IFNGR1-null cells, were analyzed for the phosphorylation of STAT1 during a 48-h period, and antiviral activity in response to IFNgamma was also measured. Stronger activation of STAT1 was observed in cells expressing all IFNGR1 variants mutated at Tyr(441), and, consistently, stronger antiviral activity was also observed in these cells. Furthermore, constitutive overexpression of SOCS-1 inhibited IFNgamma-dependent signaling only in cells expressing IFNGR1 variants that included the Tyr(441) mutation. Mutation of Tyr(441) also blocked the ability of SOCS-1 to bind to IFNGR1 and JAK2 in response to IFNgamma and the normal down-regulation of STAT1 activation and antiviral activity. These results, together with data from the literature, suggest a model in which, in response to IFNgamma, phosphorylation of Tyr(441) creates a docking site for SOCS-1, which then binds to JAK2 within the receptor-JAK complex to partially inhibit JAK2 phosphorylation. Furthermore, the virtually complete blockade of STAT1 phosphorylation by overexpressed SOCS-1 in this experiment suggests that the binding of SOCS-1 to Tyr(441) also blocks the access of STAT1 to Tyr(419) and that this effect may be the principal mechanism of inhibition of downstream signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M409863200DOI Listing

Publication Analysis

Top Keywords

response ifngamma
20
stat1 activation
12
antiviral activity
12
receptor subunit
8
socs-1
8
socs-1 binds
8
ifngamma-dependent signaling
8
cytoplasmic tyrosine
8
tyrosine residues
8
observed cells
8

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Multiple gene-deletion vaccinia virus Tiantan strain against mpox.

Virol J

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.

Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).

View Article and Find Full Text PDF

Recombinant probiotic Escherichia coli delivers the polymeric protein of swine influenza virus for protection.

Vet Microbiol

January 2025

College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:

Swine influenza virus invades the host through the respiratory mucosa, which severely restricts the development of the pig breeding industry. To construct monomeric and trimeric vaccines, we developed recombinant Escherichia coli Nissle 1917 (EcN) strains that express the receptor binding site (RBS) of the hemagglutinin (HA) antigen from H1N1 swine influenza virus. After the mucosal immunization of mice, we found that probiotics activated CD40 and CD86 in DCs and increased the levels of IL-4 and IFN-γ secretion by T cells.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Cytomegalovirus infections and reactivations are more frequent in people living with HIV (PLWH) and have been associated with increased risk of HIV progression and immunosenescence. We explored the impact of combination antiretroviral therapy (cART) on latent CMV infection in 225 young adults parenterally infected with HIV during childhood. Anti-CMV IgG antibodies were present in 93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!