We recently reported that the transcriptional coactivator and histone acetyltransferase p300 plays an important role in the G(1) phase of the cell cycle by negatively regulating c-myc and thereby preventing premature G(1) exit (Kolli, et al. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4646-4651; Baluchamy, et al. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 9524-9529). Because p300 does not substitute for all CREB-binding protein (CBP) functions, we investigated whether CBP also negatively regulates c-myc and prevents premature DNA synthesis. Here, we show that antisense-mediated depletion of CBP in serum-deprived human cells leads to induction of c-myc and that such cells emerge from quiescence without growth factors at a rate comparable with that of p300-depleted cells. The CBP-depleted cells contained significantly reduced levels of the cyclin-dependent kinase inhibitor p21 and low levels of p107 and p130 (but not pRb) phosphorylation, suggesting that these factors, along with elevated levels of c-Myc, contribute to induction of DNA synthesis. Antisense c-Myc reversed the phosphorylation of p107 and p130 and the induction of S phase in CBP-depleted cells, indicating that up-regulation of c-myc is directly responsible for the induction of S phase. Furthermore, the serum-stimulated p300/CBP-depleted cells did not traverse beyond S phase, and a significant number of these cells died of apoptosis, which was not related to p53 levels. These cells also contained significantly higher levels of c-Myc compared with normal cells. When c-myc expression was blocked by antisense c-Myc, the apoptosis of the serum-stimulated CBP-depleted cells was reversed, indicating that high levels of c-Myc contribute to apoptosis. Thus, despite their high degree of structural and functional similarities, normal levels of both p300 and CBP are essential for keeping c-myc in a repressed state in G(1) and thereby preventing inappropriate entry of cells into S phase. In addition, both these proteins also provide important functions in coordinated cell cycle progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M408633200 | DOI Listing |
J Appl Toxicol
January 2025
Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Integrated Chinese Medicine and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei 230012, China.
This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China. Electronic address:
Chemotherapy remains a cornerstone in the treatment of bladder cancer (BLCA); however, the development of chemoresistance substantially limits its efficacy and significantly affects patient survival. Thus, elucidating the molecular mechanisms underlying BLCA chemoresistance is critical to improving patient outcomes. Our study identified MCM6 as an oncogene that facilitates BLCA proliferation and invasion and is linked to cisplatin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!