Differential protein mobility of the gamma-aminobutyric acid, type A, receptor alpha and beta subunit channel-lining segments.

J Biol Chem

Departments of Physiology and Biophysics and of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA.

Published: January 2005

The gamma-aminobutyric acid, type A (GABAA), receptor ion channel is lined by the second membrane-spanning (M2) segments from each of five homologous subunits that assemble to form the receptor. Gating presumably involves movement of the M2 segments. We assayed protein mobility near the M2 segment extracellular ends by measuring the ability of engineered cysteines to form disulfide bonds and high affinity Zn(2+)-binding sites. Disulfide bonds formed in alpha1beta1E270Cgamma2 but not in alpha1N275Cbeta1gamma2 or alpha1beta1gamma2K285C. Diazepam potentiation and Zn2+ inhibition demonstrated that expressed receptors contained a gamma subunit. Therefore, the disulfide bond in alpha1beta1E270Cgamma2 formed between non-adjacent subunits. In the homologous acetylcholine receptor 4-A resolution structure, the distance between alpha carbon atoms of 20' aligned positions in non-adjacent subunits is approximately 19 A. Because disulfide trapping involves covalent bond formation, it indicates the extent of movement but does not provide an indication of the energetics of protein deformation. Pairs of cysteines can form high affinity Zn(2+)-binding sites whose affinity depends on the energetics of forming a bidentate-binding site. The Zn2+ inhibition IC50 for alpha1beta1E270Cgamma2 was 34 nm. In contrast, it was greater than 100 microM in alpha1N275Cbeta1gamma2 and alpha1beta1gamma2K285C receptors. The high Zn2+ affinity in alpha1beta1E270Cgamma2 implies that this region in the beta subunit has a high protein mobility with a low energy barrier to translational motions that bring the positions into close proximity. The differential mobility of the extracellular ends of the beta and alpha M2 segments may have important implications for GABA-induced conformational changes during channel gating.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M410881200DOI Listing

Publication Analysis

Top Keywords

protein mobility
12
gamma-aminobutyric acid
8
acid type
8
beta subunit
8
extracellular ends
8
cysteines form
8
disulfide bonds
8
high affinity
8
affinity zn2+-binding
8
zn2+-binding sites
8

Similar Publications

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.

View Article and Find Full Text PDF

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small DNA-binding protein that specifically targets AT-rich DNA sequences. Structurally, HMGA2 is an intrinsically disordered protein (IDP), comprising three positively charged 'AT-hooks' and a negatively charged C-terminus. HMGA2 can form homodimers through electrostatic interactions between its 'AT-hooks' and C-terminus.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Backgrounds: Renal interstitial fibrosis (RIF) constitutes the ultimate pathological alteration in nearly all chronic kidney diseases (CKD). Mesenchymal stem cell conditioned medium (MSC-CM) exhibits an alleviating impact on renal fibrosis; however, the underlying mechanism remains unclear. The objective of this study was to explore whether MSC-CM regulates the expression of α-smooth muscle actin (α-SMA), Transforming growth factor-β1 (TGF-β1), Hypoxia-inducible factor-1α (HIF-1α), Nuclear receptor coactivators (NCOA1), and SRY-related high mobility (Sox9).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!