Azo dyes are widely used in dye manufacturing, paper printing, textile industries, and as tattoo pigmentation. Since intestinal and skin bacteria can metabolize certain azo dyes to carcinogenic compounds, many researchers have studied the azoreductases of these bacteria. In this study, we used a microarray method to identify the intestinal bacterial species from cultured fecal samples in Brain Heart Infusion (BHI) broth with or without azo dyes that may be involved in azo dye reduction. The microarray was designed to identify 40 bacterial species that are reported in the literature to be predominant in human feces. Results from this study showed 26-30 species are present in the cultured fecal samples. The representative bacteria were then examined for the azo dye reduction activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875181 | PMC |
http://dx.doi.org/10.1016/j.bios.2004.04.011 | DOI Listing |
NAR Genom Bioinform
March 2025
Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.
Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
σ serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ promoters and regulon in bacterial genomes.
View Article and Find Full Text PDFAs one of the most sensitive and fragile alpine ecosystems in the Qilian Mountains, the alpine meadow holds significant scientific importance in understanding the changes in the characteristics of soil bacterial community in response to altitude and aspect variations. In our study, we analyzed the composition, diversity, and function of soil bacterial communities in alpine meadows at different altitudes and aspects and their relationship with environmental factors. Our results indicate that altitude and aspect orientation significantly influences the diversity index and composition of soil bacterial communities.
View Article and Find Full Text PDFSmall
January 2025
Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China.
Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm).
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!