In Escherichia coli, the post-transcriptional addition of poly(A) tails by poly(A) polymerase I (PAP I, pcnB) plays a significant role in cellular RNA metabolism. However, many important features of this system, including its regulation and the selection of polyadenylation sites, are still poorly understood. Here we show that the inactivation of Hfq (hfq), an abundant RNA-binding protein, leads to the reduction in the ability of PAP I to add poly(A) tails at the 3' termini of mRNAs containing Rho-independent transcription terminators even though PAP I protein levels remain unchanged. Those poly(A) tails that are synthesized in the absence of Hfq are shorter in length, even in the absence of polynucleotide phosphorylase (PNPase), RNase II and RNase E. In fact, the biosynthetic activity of PNPase in the hfq single mutant is enhanced and it becomes the primary polynucleotide polymerase, adding heteropolymeric tails almost exclusively to 3' truncated mRNAs. Surprisingly, both PNPase and Hfq co-purified with His-tagged PAP I under native conditions indicating a potential complex among these proteins. Immunoprecipitation experiments using PNPase- and Hfq-specific antibodies confirmed the protein-protein interactions among PAP I, PNPase and Hfq. Analysis of mRNA half-lives in hfq, deltapcnB and hfq deltapcnB mutants suggests that Hfq and PAP I function in the same mRNA decay pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2004.04337.x | DOI Listing |
Nat Commun
January 2025
School of Infection and Immunity, University of Glasgow, Glasgow, Scotland, UK.
Mitochondrial ribosomes (mitoribosomes) are essential, and their function of synthesising mitochondrial proteins is universal. The core of almost all mitoribosomes is formed from a small number of long and self-folding rRNA molecules. In contrast, the mitoribosome of the apicomplexan parasite Toxoplasma gondii assembles from over 50 extremely short rRNA molecules.
View Article and Find Full Text PDFTalanta
January 2025
The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:
Electrochemical bioassays that rely on sensor interfaces based on immobilized DNA probes often encounter challenges such as complex fabrication processes and limited binding efficiency. In this study, we developed a novel electrochemical bioassay that bypasses the need for probe immobilization by employing a solution-phase nucleic acid reaction to create interfacial barriers on unmodified electrodes, enabling rapid, just-in-time sensor interface formation. Specifically, a 3'-phosphorylated recognition probe was used to identify the target microRNA-21 (miR-21), followed by target recycling facilitated by duplex-specific nuclease (DSN), which resulted in extensive hydrolysis of the recognition probe into DNA fragments with 3'-hydroxyl ends.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan. Electronic address:
Cellular senescence is an essentially irreversible cell cycle arrest associated with upregulated inflammatory responses that contribute to various pathological and physiological processes, including aging, cancer, and cancer prevention. However, the underlying mechanisms are not fully understood. Here, we show that the downregulation of CNOT3, a subunit of the CCR4-NOT complex that deadenylates mRNA poly(A) tails, promotes cellular senescence in subpopulation of A549 human non-small cell lung cancer cells.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: Recent genomic research has identified several genetic factors contributing to B-cell acute lymphoblastic leukemia (B-ALL). However, the exact cause of the disease is still not fully understood. It is known that mutations in the TAL2 gene play important roles in the development of acute lymphoblastic leukemia.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!