Using a combined rational-combinatorial approach, stable copper binding sites were implemented in template-assembled synthetic four-helix bundle proteins constructed by three different helices with only 16 amino acid residues. These peptides include two histidines and one cysteine at positions appropriate for coordinating a copper ion. Sequence variations of the helices were made in the second coordination shell or even more remote from the copper binding site (i) to increase the overall stability of the metalloproteins and (ii) to fine-tune the structure and properties of the copper center. As a result, ca. 90% of the 180 proteins that were synthesized were capable to bind copper with a substantially higher specificity than those obtained in the first design cycle (Schnepf, R.; Horth, P.; Bill, E.; Wieghardt, K.; Hildebrandt, P.; Haehnel, W. J. Am. Chem. Soc. 2001, 123, 2186-2195). Furthermore, the stabilities of the copper protein complexes were increased by up to 2 orders of magnitude and thus allowed a UV-vis absorption, resonance Raman, electron paramagnetic resonance, and (magnetic) circular dichroism spectroscopic identification and characterization of three different types of copper binding sites. It could be shown that particularly steric perturbations in the vicinity of the His(2)Cys ligand set control the formation of either a tetragonal (type II) or a tetrahedral (type I) copper binding site. With the introduction of two methionine residues above the histidine ligands, a mixed-valent dinuclear copper binding site was generated with spectroscopic properties that are very similar to those of Cu(A) sites in natural proteins. The results of the present study demonstrate for the first time that structurally different metal binding sites can be formed and stabilized in four-helix bundle proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0484294 | DOI Listing |
Biochim Biophys Acta Proteins Proteom
December 2024
Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:
The widespread use of copper (Cu) has raised concerns about environmental pollution and adverse effects on human health, highlighting the need to develop copper detection methods. Developing near-infrared (NIR) luminescent probes for imaging subcellular Cu is still a challenge. In this work, we have developed a luminescence probe based on a NIR iridium(III) complex, which rapidly detects Cu by combining salicylaldehyde and amine groups through a simple Schiff base reaction on the N^N ligand.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK.
Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown.
View Article and Find Full Text PDFMetallomics
December 2024
Department of Environmental and Physical Sciences, Faculty of Science.
Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!