Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids.

J Am Chem Soc

Materials & Manufacturing Directorate, Air Force Research Laboratory, 2941 Hobson Way, Wright-Patterson AFB, Ohio 45433, USA.

Published: November 2004

In this work, the suitability of imidazolium-based ionic liquid solvents is investigated for the dissolution and regeneration of silkworm (Bombyx mori) silk. Within an ionic liquid the anion plays a larger role in dictating the ultimate solubility of the silk. The dissolution of the silk in the ionic liquid is confirmed using wide-angle X-ray scattering. The dissolved silk is also processed into 100 mum-thick, two-dimensional films, and the structure of these films is examined. The rinse solvent, acetonitrile or methanol, has a profound impact on both the topography of the films and the secondary structure of the silk protein. The image depicts a silkworm cocoon dissolved in 1-butyl-3-methylimidazolium chloride and then regenerated as a film with birefringence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja046079fDOI Listing

Publication Analysis

Top Keywords

ionic liquid
12
dissolution regeneration
8
bombyx mori
8
mori silk
8
silk ionic
8
silk
6
regeneration bombyx
4
silk fibroin
4
ionic
4
fibroin ionic
4

Similar Publications

This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.

View Article and Find Full Text PDF

Facile and Regioselective Deuteration of C2-Alkylated Imidazolium Salts in the Presence of Cesium Carbonate.

Chemistry

December 2024

Université de Liège: Universite de Liege, Laboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie B6a, Sart-Tilman, 4000, Liege, BELGIUM.

Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diiso-propyl-phenyl substituents on their nitrogen atoms, and C1 to C4 alkyl chains on their C2 carbon atom were readily deuterated with D2O as a cheap and non-toxic deuterium source in the presence of Cs2CO3, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from D2O to the imidazolium salt in a concerted fashion.

View Article and Find Full Text PDF

Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.

View Article and Find Full Text PDF

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!