A mucin coat is deposited on rabbit embryos during passage through the oviduct; rabbit blastocysts cultured from the 1-cell stage in vitro have no mucin coat. When cultured blastocysts are transferred to recipients, the lack of mucin coat might account in part for subsequent failure of pregnancy. We have investigated the possibility that mucin coat deposition is induced following transfer of in vitro 72 h-cultured blastocysts to oviducts of asynchronous or synchronous recipients. One-cell embryos were collected by flushing oviducts 19-20 h post-coitus and were cultured in vitro for 72 h until they reached the blastocyst stage. The blastocysts were transferred to the oviducts of recipients that were synchronized either with the donors (synchronous) or 1 day later than the donors (asynchronous). They were recovered after 24-48 h and the mucin coat thickness and embryo degeneration rate were measured. The degeneration rate of blastocysts recovered from uteri of synchronous recipients was higher than that from asynchronous recipients (72.2% vs 40.0%). The mucin coats around embryos recovered from oviducts of asynchronous recipients after 48 h were thicker than those from synchronous recipients. More asynchronous recipients were pregnant and gave birth to more pups than synchronous recipients. These results indicate that the oviducts of asynchronous recipients secreted more mucin around the transferred embryos, causing higher rates of implantation of the in vitro-cultured blastocysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/s0967199404002795 | DOI Listing |
Sci Adv
September 2024
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
Intracellular accumulation of misfolded proteins causes serious human proteinopathies. The transmembrane emp24 domain 9 (TMED9) cargo receptor promotes a general mechanism of cytotoxicity by entrapping misfolded protein cargos in the early secretory pathway. However, the molecular basis for this TMED9-mediated cargo retention remains elusive.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2024
Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Background: Proper evaluation of therapeutic responses in Chagas disease is hampered by the prolonged persistence of antibodies to Trypanosoma cruzi measured by conventional serological tests and by the lack of sensitivity of parasitological tests. Previous studies indicated that tGPI-mucins, an α-Gal (α-d-Galp(1→3)-β-d-Galp(1→4)-d-GlcNAc)-rich fraction obtained from T. cruzi trypomastigotes surface coat, elicit a strong and protective antibody response in infected individuals, which disappears soon after successful treatment.
View Article and Find Full Text PDFJ Microbiol Biotechnol
October 2023
Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
To exert their beneficial effects, it is essential for the commensal bacteria of probiotic supplements to be sufficiently protected as they pass through the low pH environment of the stomach, and effectively colonize the intestinal epithelium downstream. Here, we investigated the effect of a multilayer coating containing red ginseng dietary fiber, on the acid tolerance, and the adhesion and proliferation capacities of three strains ( KGC1901, KGC1201, KGC1601) isolated from , using HT-29 cells, mucin-coated plates, and human pluripotent stem cell-derived intestinal epithelial cells as in vitro models of human gut physiology. We observed that the multilayer-coated strains displayed improved survival rates after passage through gastric juice, as well as high adhesion and proliferation capacities within the various gut epithelial systems tested, compared to their uncoated counterparts.
View Article and Find Full Text PDFJ Insect Physiol
June 2023
Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic. Electronic address:
The silk produced by Lepidoptera caterpillars is a mixture of proteins secreted by the transformed labial glands, the silk glands (SG). The silk fiber consists of insoluble filamentous proteins that form a silk core and are produced in the posterior part of the SG and soluble coat proteins consisting of sericins and various other polypeptides secreted in the middle part of the SG. We constructed a silk gland specific transcriptome of Andraca theae and created a protein database required for peptide mass fingerprinting.
View Article and Find Full Text PDFMolecules
January 2023
Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran.
Magnetic mesoporous silica nanoparticles (MMSNPs) are being widely investigated as multifunctional novel drug delivery systems (DDSs) and play an important role in targeted therapy. Here, magnetic cores were synthesized using the thermal decomposition method. Further, to improve the biocompatibility and pharmacokinetic behavior, mesoporous silica was synthesized using the sol-gel process to coat the magnetic cores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!