Selective reduction of fibrotic markers in repairing corneas of mice deficient in Smad3.

J Cell Physiol

Evelyn F. and William L. McKnight Vision Research Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida 33101, USA.

Published: April 2005

The cytokine transforming growth factor-beta (TGF-beta) is a key mediator of fibrosis in all organs. Expression of fibrotic markers in repairing cutaneous wounds is reduced in mice lacking Smad3, a downstream cytoplasmic mediator of TGF-beta signaling (Ashcroft et al., 1999, Nat Cell Biol 1(5):260-266). This is correlated with a reduction in inflammation, and thus in the blood elements thought to be a significant source of TGF-beta at the wound site, the principle form being TGF-beta1. Since the major cellular source of TGF-beta in corneal wounds is the epithelium, and the principal isoform is TGF-beta2, we investigated whether Smad3 deficiency has similar anti-fibrotic effects on corneal repair. In contrast to the situation of cutaneous repair, expression of the fibrotic marker, fibronectin, was equivalent in corneal repair tissue of Smad3-/- mice as compared to their +/- littermates, even though expression of a second fibrotic marker not previously examined in cutaneous wounds, alpha-smooth muscle (sm) actin, was reduced. Also unlike in cutaneous wounds, the inflammatory response was unaffected. These differences between corneal and cutaneous repair correlated with the lack of apparent change in the levels of corneal TGF-beta2. There was a significant reduction of alpha-sm actin expression in stromal cell cultures established from Smad3-/- mice as compared to their +/- littermates, but the rate of cell proliferation stimulated by TGF-beta, as well as expression of fibronectin, was unaffected. Therefore, a deficiency in Smad3 has different effects on corneal and cutaneous repair, probably due to the difference in cellular source and principal isoform of the TGF-beta involved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20215DOI Listing

Publication Analysis

Top Keywords

cutaneous wounds
12
cutaneous repair
12
fibrotic markers
8
markers repairing
8
expression fibrotic
8
source tgf-beta
8
cellular source
8
principal isoform
8
effects corneal
8
corneal repair
8

Similar Publications

The Topographic Map of the Midfoot: Implication for Improving Safety of Dorsal Approach of Midfoot Surgeries.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Anatomy, School of Medicine, Marmara University, Basibuyuk Yolu, Maltepe, Istanbul, Turkey (Dr. Ismailoglu, Dr. Sehirli, and Dr. Ayingen); the Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey (Dr. Bayramoglu and Dr. Savasan); and the Department of Orthopedic Surgery, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey (Dr. Kocaoglu).

Purpose: The surgical approach for midfoot injuries classically requires dual dorsal incision and identification of the neurovascular structures that are susceptible to injury during the surgery. The aim of this study was to map the topographic anatomy of the dorsum of the foot along with tarsal joints for the dorsal approach of midfoot surgery that would facilitate the surgery and minimize the risk of neurovascular injuries for surgeons who specially focus on foot and ankle injuries.

Methods: The dorsum of the foot was evaluated in 12 feet injected with latex containing a red colorant to visualize the arterial vessels.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a tropical disease that can cause chronic lesions and leave life-long scars, leading to social stigmatization and psychological disorders. Using growth factors and immunomodulatory agents that could accelerate wound healing and reduce the scar is highly demanded. Epidermal growth factor (EGF) plays an essential role in wound healing.

View Article and Find Full Text PDF

Microneedles as transdermal drug delivery system for enhancing skin disease treatment.

Acta Pharm Sin B

December 2024

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix.

View Article and Find Full Text PDF

Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.

View Article and Find Full Text PDF

parts of the world (1,2). CL is characterized by significant clinical variability. An ulcerated nodule on the exposed parts of the body (corresponding to the parasite inoculation site by the vector insect) is the classic presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!