Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Aims: Bacterial proteoglycan-derived muramyl dipeptide (MDP) activates the intracellular NOD2/CARD15 gene product. How intestinal epithelial cells take up MDP is poorly understood. We hypothesized that the intestinal apical di-/tripeptide transporter, hPepT1, transports MDP, thereby activating downstream pathways similar to nuclear factor kappa B (NF-kappaB).
Methods: Time- and concentration-dependent (3)H-MDP uptakes were studied in Caco2/bbe (C2) cell monolayers where hPepT1 expression was either over- or underexpressed, using an inducible adenovirus system or silencing RNA (siRNA), respectively. NF-kappaB activation and interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) release were determined by enzyme-linked immunosorbent assay. NOD2/CARD15 expression was inhibited by siRNA. MDP in human duodenal, cecal, and stool samples was measured.
Results: MDP, but not its isoforms, inhibited uptake of glycosylsarcosine in C2 cells, indicating stereoselective and competitive inhibition. Approximately 90% of the MDP was cytosolic, showing uptake rather than binding. The K m for MDP uptake was 4.3 mmol/L. Cells overexpressing hPepT1 showed increased Gly-Sar and MDP uptake, whereas decreased uptake was observed after hPepT1 siRNA-inhibition. MDP treatment activated NF-kappaB, resulting in IL-8 release, an effect blocked by siRNA-inhibited expression of NOD2/CARD15. MDP content in cecal and stool samples (in normal subjects) was 20-87 micromol/L, but undetectable in duodenal fluid.
Conclusions: In colonic epithelial cells, MDP is taken up by hPepT1 and activates NF-kappaB and chemokine production. Because hPepT1 expression in chronic colonic inflammation is increased, this may play an important role in promoting colonocyte participation in host defense and pathogen clearance through increased uptake of MDP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2004.07.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!