Down syndrome occurs every 1/1000 births and is the most frequent genetic cause of mental retardation. The genetic substrate of Down syndrome, an extra chromosome 21, was discovered by Lejeune, half-a-century ago, and the chromosome has been fully sequenced, although the gene(s) implicated in the mental retardation observed with the syndrome are still unknown. Observations of patients with partial trisomy of the 21q22.2 fragment suggest that most of the signs of the syndrome, including mental retardation, could be influenced by the region referred to as the Down Minimal Chromosomal Region-1 (DCR-1) for that reason. Using the extensive syntenies between human chromosome 21 and murine chromosome 16, Smith et al. (1995, 1997) developed transpolygenic mice with human chromosome 21 fragments covering the DCR-1. Here, we explored cognitive performances in mice over-expressing the genes carried by these fragments with the Morris water-maze and fear-conditioning procedures. The 152F7 transpolygenic mice had lower performance levels, compared to non-transgenic and other transgenic mice on most measurements in the water-maze. In fear-conditioning, all transgenic mice recorded lower performance levels compared to controls in the altered context stage. The 230E8, 141G6 and 285E6 mice failed to learn or react when the sound used as the conditional stimulus was added. These results showed that the 152F7 region played a crucial role in cognitive impairment, supporting the hypothesis of DYRK-1A gene involvement. However, the data presented here also suggest that other chromosomal regions within the DCR-1 may be involved in specific cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10519-004-5584-3DOI Listing

Publication Analysis

Top Keywords

mental retardation
12
genes implicated
8
chromosomal region-1
8
region-1 dcr-1
8
human chromosome
8
transpolygenic mice
8
water-maze fear-conditioning
8
lower performance
8
performance levels
8
levels compared
8

Similar Publications

MYT1L syndrome is a newly recognized disorder characterized by intellectual disability, speech and motor delay, neuroendocrine disruptions, ADHD, and autism. In order to study this gene and its association with these phenotypes, our lab recently created a heterozygous mutant mouse inspired by a clinically relevant mutation. This model recapitulates several of the physical and neurologic abnormalities seen in humans with MYT1L syndrome, such as weight gain, microcephaly, and behavioral disruptions.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

SYNGAP1 is a major regulator of synaptic plasticity through its interaction with synaptic scaffold proteins and modulation of Ras and Rap GTPase signaling pathways. mutations in humans are often associated with intellectual disability, epilepsy, and autism spectrum disorder. heterozygous loss-of-function results in impaired LTP, premature maturation of dendritic spines, learning disabilities and seizures in mice.

View Article and Find Full Text PDF

Background: Pathogenic variants in are associated with pyridoxine-dependent epilepsy (PDE), a rare autosomal recessive disorder characterized by epileptic seizures, unresponsiveness to standard antiseizure medications (ASM), and a response only to pyridoxine. Here, we report two patients (from a consanguineous family) with neonatal seizures and developmental delay.

Case Presentation: Patient 1 (a 13-year-old girl) was born normally at term.

View Article and Find Full Text PDF

Multiple sclerosis (MS) falls within the spectrum of central nervous system (CNS) demyelinating diseases that may lead to permanent neurological disability. Fundamental to the diagnosis and clinical surveillance is magnetic resonance imaging (MRI) that allows for the identification of T2-hyperintensities associated with autoimmune injury that demonstrate distinct spatial distribution patterns. Here, we describe the clinical experience of a 31-year-old, right-handed, White man seen in consultation at The University of Texas Southwestern Medical Center in Dallas, Texas, following complaints of headaches that began after head trauma related to military service.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!