The zebrafish kidney marrow is considered to be the organ of definitive hematopoiesis, analogous to the mammalian bone marrow. We have sequenced 26,143 ESTs and isolated 304 cDNAs with putative full-length ORF from a zebrafish kidney marrow cDNA library. The ESTs formed 7,742 assemblies, representing both previously identified zebrafish ESTs (56%) and recently discovered zebrafish ESTs (44%). About 30% of these EST assemblies have orthologues in humans, including 1,282 disease-associated genes in the Online Mendelian Inheritance in Man (OMIM) database. Comparison of the effective and regulatory molecules related to erythroid functions across species suggests a good conservation from zebrafish to human. Interestingly, both embryonic and adult zebrafish globin genes showed higher homology to the human embryonic globin genes than to the human fetal/adult ones, consistent with evo-devo correlation hypothesis. In addition, conservation of a whole set of transcription factors involved in globin gene switch suggests the regulatory network for such remodeling mechanism existed before the divergence of the teleost and the ancestor of mammals. We also carried out whole-mount mRNA in situ hybridization assays for 493 cDNAs and identified 80 genes (16%) with tissue-specific expression during the first five days of zebrafish development. Twenty-six of these genes were specifically expressed in hematopoietic or vascular tissues, including three previously unidentified zebrafish genes: coro1a, nephrosin, and dab2. Our results indicate that conserved genetic programs regulate vertebrate hematopoiesis and vasculogenesis, and support the role of the zebrafish as an important animal model for studying both normal development and the molecular pathogenesis of human blood diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC528959PMC
http://dx.doi.org/10.1073/pnas.0407241101DOI Listing

Publication Analysis

Top Keywords

zebrafish kidney
12
kidney marrow
12
zebrafish
10
zebrafish ests
8
globin genes
8
genes
6
hematopoietic gene
4
gene expression
4
expression profile
4
profile zebrafish
4

Similar Publications

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

Growth inhibition and toxicity assessments of cis-3,4-diaryl-α-methylene-γ-butyrolactams in cultured human renal cancer cells and zebrafish embryos.

Biochim Biophys Acta Gen Subj

January 2025

Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan. Electronic address:

This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1-8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8.

View Article and Find Full Text PDF

Optimized Intravenous Injection in Adult Zebrafish.

J Vis Exp

December 2024

Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong; ZeBlast Technology Limited, Hong Kong Science Park;

Intravenous (IV) injection is widely recognized as the most effective and commonly utilized method for achieving systemic delivery of substances in mammalian research models. However, its application in adult zebrafish for drug delivery, stem cell transplantation, and regenerative and cancer studies has been limited due to the challenges posed by their small body size and intricate blood vessels. To overcome these limitations, alternative injection techniques such as intracardiac and retro-orbital (RO) injection have been explored in the past for stem cell transplantation in adult zebrafish.

View Article and Find Full Text PDF

Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model.

Biomed Pharmacother

January 2025

IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy.

Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD.

View Article and Find Full Text PDF

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!