Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The molecular signature that defines tumor microvasculature will likely provide clues as to how vascular-dependent tumor proliferation is regulated. Using purified endothelial cells, we generated a database of gene expression changes accompanying vascular proliferation in invasive breast cancer. In contrast to normal mammary vasculature, invasive breast cancer vasculature expresses extracellular matrix and surface proteins characteristic of proliferating and migrating endothelial cells. We define and validate the up-regulated expression of VE-cadherin and osteonectin in breast tumor vasculature. In contrast to other tumor types, invasive breast cancer vasculature induced a high expression level of specific transcription factors, including SNAIL1 and HEYL, that may drive gene expression changes necessary for breast tumor neovascularization. We demonstrate the expression of HEYL in tumor endothelial cells and additionally establish the ability of HEYL to both induce proliferation and attenuate programmed cell death of primary endothelial cells in vitro. We also establish that an additional intracellular protein and previously defined metastasis-associated gene, PRL3, appears to be expressed predominately in the vasculature of invasive breast cancers and is able to enhance the migration of endothelial cells in vitro. Together, our results provide unique insights into vascular regulation in breast tumors and suggest specific roles for genes in driving tumor angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-1976 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!