Targeting unique mRNA molecules using antisense approaches, based on sequence specificity of double-stranded nucleic acid interactions should, in theory, allow for design of drugs with high specificity for intended targets. Antisense-induced degradation or inhibition of translation of a target mRNA is potentially capable of inhibiting the expression of any target protein. In fact, a large number of proteins of widely varied character have been successfully downregulated using an assortment of antisense-based approaches. The most prevalent approach has been to use antisense oligonucleotides (ASOs), which have progressed through the preclinical development stages including pharmacokinetics and toxicological studies. A small number of ASOs are currently in human clinical trials. These trials have highlighted several toxicities that are attributable to the chemical structure of the ASOs, and not to the particular ASO or target mRNA sequence. These include mild thrombocytopenia and hyperglycemia, activation of the complement and coagulation cascades, and hypotension. Dose-limiting toxicities have been related to hepatocellular degeneration leading to decreased levels of albumin and cholesterol. Despite these toxicities, which are generally mild and readily treatable with available standard medications, the clinical trials have clearly shown that ASOs can be safely administered to patients. Alternative chemistries of ASOs are also being pursued by many investigators to improve specificity and antisense efficacy and to reduce toxicity. In the design of ASOs for anticancer therapeutics in particular, the goal is often to enhance the cytotoxicity of traditional drugs toward cancer cells or to reduce the toxicity to normal cells to improve the therapeutic index of existing clinically relevant cancer chemotherapy drugs. We predict that use of antisense ASOs in combination with small molecule therapeutics against the target protein encoded by the antisense-targeted mRNA, or an alternate target in the same or a connected biological pathway, will likely be the most beneficial application of this emerging class of therapeutic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2004.04.017 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
Mol Ther Nucleic Acids
March 2025
Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Pediatrics, Peking University First Hospital, Beijing, China.
Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.
Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.
Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.
BMC Cancer
January 2025
Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!