DRESSA: biosensing of dioxin and dioxin-like chemicals using secreted alkaline phosphatase.

Anal Biochem

Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Yamanashi 409-3898, Japan.

Published: December 2004

In this article, we describe a highly sensitive biosensing system, DRESSA, for detection of dioxin and dioxin-like chemicals. Tandem copies of the dioxin-responsive element (DRE) fused to a minimal viral promoter were subcloned into an expression plasmid upstream of a secreted alkaline phosphatase (SEAP) gene. When murine hepatoma cell line Hepa-1c1c7 was stably transfected with this construct, established sensor clones secreted SEAP following stimulation with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). A clone HeDS49 was found to be extremely sensitive; it secreted SEAP in response to TCDD in dose- and time-dependent manners, and the minimal detection limit was 100 fM. To detect more than 6 pM of TCDD, the whole assay time (from cell seeding to measurement of SEAP activity) could be reduced to 4h. Secretion of SEAP was induced selectively by other activators of DRE (3-methylcholanthrene, benzo[a]pyrene, and beta-naphthoflavone) but not by activators of unrelated responsive elements. These data suggested that because of the rapidity, easiness, specificity, and high sensitivity of DRESSA, it is more suitable than currently available detection systems for dioxin and dioxin-like chemicals and would be of great advantage to high-throughput screening of these pollutants in environmental samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2004.08.017DOI Listing

Publication Analysis

Top Keywords

dioxin dioxin-like
12
dioxin-like chemicals
12
secreted alkaline
8
alkaline phosphatase
8
secreted seap
8
seap
5
dressa biosensing
4
biosensing dioxin
4
secreted
4
chemicals secreted
4

Similar Publications

Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells.

View Article and Find Full Text PDF

This study investigates the association between prenatal exposure to dioxin-like polychlorinated biphenyls (DL-PCBs) and glucocorticoid and androgenic hormone levels in cord blood. We analyzed cord blood samples from 500 mother-infant pairs from China (2022-2023), focusing on hormones including cortisol, cortisone, dehydroepiandrosterone (DHEA), and androstenedione. The main analysis revealed significant reductions in cortisol levels with increased exposure to PCB-77 (β = -3.

View Article and Find Full Text PDF

Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1).

View Article and Find Full Text PDF

Non-dioxin-like polychlorinated biphenyls (NDL-PCBs), as well as dioxin-like PCBs, are endocrine disruptors that persist in human and animal tissues worldwide. Due to their lipophilicity and resistance to enzymatic degradation, PCBs accumulate in fat deposits contributing to the onset of endocrine and metabolic diseases. Aquaporins (AQPs) are transmembrane channel proteins that allow the transport of water and small solutes.

View Article and Find Full Text PDF

Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!