Neurons of the pontine respiratory group (PRG) in the region of the nucleus parabrachialis medialis and the Kolliker-Fuse nucleus are believed to play an important role in promoting the inspiratory (I) off-switch (IOS). In decerebrate gallamine-paralyzed cats ventilated with a cycle-triggered pump system (lung inflation during the neural I phase), we studied the effects of vagal (V) afferent inputs on firing of I-modulated neurons (the most numerous population in PRG) and on I duration. The predominant V effect on unit activity was inhibitory, as shown by two types of test: (a) withholding of inflation during an I phase, which produced increase of unit firing and of its respiratory modulation (58/66 neurons in 14 cats), indicating disinhibition due to removal of phasic V input; (b) delivery of afferent V stimulus trains during a no-inflation I phase, which produced decrease of unit firing and of its respiratory modulation (20 neurons). In addition, application of V input during the neural expiratory (E) phase, which lengthened E phase duration, produced no effect on the neurons' firing, suggesting that the inhibition during I was presynaptic in origin. The results may be interpreted by the hypothesis that the medullary late-I presumptive IOS neurons receive excitatory inputs from the PRG I-modulated neurons as well as from V afferents.. With relatively strong V input, this pontine excitatory output is reduced by inhibition, whereas with relatively weak V input that excitatory output is increased due to reduction of inhibition. Thus the pontine and the V influences on the IOS can operate in a complementary manner dependent on state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2004.07.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!