The degradation of Monuron (3-(4-chlorophenyl)-1,1-dimethylurea) photoinduced by Fe(III) in aqueous solution has been investigated. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of *OH radical formation. These *OH radicals are able to degrade Monuron until total mineralisation. The primordial role of the speciation of Fe(III)-hydroxy complex in aqueous solution, for the efficiency of the elimination of pollutant, was shown and explained in detail. The formation of Fe(II) in the irradiated solution was monitored and correlated with the total organic carbon evolution. Degradation photoproducts were identified and a mechanism of degradation is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2004.08.058 | DOI Listing |
Acta Cir Bras
January 2025
Universidade Federal de Pernambuco - Pós-Graduação em Medicina Tropical - Recife (PB) - Brazil.
Purpose: To evaluate intravenous meropenem and intraperitoneal 10% aqueous extract of Schinus terebinthifolius (aroeira) in elderly rats after autogenous fecal peritonitis.
Methods: Thirty 18-month-old Wistar rats underwent peritonitis with 4 mL/kg of autogenous fecal solution. They were stratified into groups: control without treatment; study I, treated with meropenem (40 mg/kg); and study II, treated with meropenem at the same dose and intraperitoneal 10% aqueous extract of aroeira.
J Am Chem Soc
January 2025
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
protein design has advanced such that many peptide assemblies and protein structures can be generated predictably and quickly. The drive now is to bring functions to these structures, for example, small-molecule binding and catalysis. The formidable challenge of binding and orienting multiple small molecules to direct chemistry is particularly important for paving the way to new functionalities.
View Article and Find Full Text PDFLangmuir
January 2025
School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan.
Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.
View Article and Find Full Text PDFLangmuir
January 2025
Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan.
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!