Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The extinction spectra in ultraviolet and visible radiation were analyzed using filtered and unfiltered water samples obtained in 11 open water bodies in the Neembucù (Paraguay) and Pantanal (Brazil) wetlands. The role of dissolved and suspended matter in the total extinction was analyzed between 260 nm and 700 nm. The chromophoric dissolved organic matter (CDOM) was the major component in extinction of considered ultraviolet radiation (260-400 nm). The differences in CDOM concentrations explained the main pattern of extinction of the ultraviolet radiation in the samples. Nevertheless, differences between the studied water bodies were found also to depend on the rate of photodegradation and photobleaching. The methodology developed in the present study was to distinguish "humic optic waters" according to quantity and quality of dissolved and suspended matter present. In the "humic optic water", the penetration of 10% of incident UV radiation and the photoactive layer are estimated. The influence of particulate matter increases in the total extinction of the wavelengths higher than 400 nm. The integral of the extinction curve of suspended matter in the visible wavelengths (400-700 nm) was found to relate with the total suspended solids and chlorophyll concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2004.08.050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!