A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Indirect detection of protein-metal binding: interaction of serum transferrin with In3+ and Bi3+. | LitMetric

Transferrins comprise a class of monomeric glycoproteins found in all vertebrates, whose function is iron sequestration and transport. In addition to iron, serum transferrin also binds a variety of other metals and is believed to provide a route for the in vivo delivery of such metals to cells. In the present study, ESI MS is used to investigate interactions between human serum transferrin and two nonferrous metals, indium (a commonly used imaging agent) and bismuth (a component of many antiulcer drugs). While the UV-Vis absorption spectroscopy measurements clearly indicate that both metals bind strongly to transferrin in solution, the metal-protein complex can be detected by ESI MS only for indium, but not for bismuth. Despite the apparently low stability of the transferrin-bismuth complex in the gas phase, presence of such complex in solution can be established by ESI MS indirectly. This is done by monitoring the evolution of charge state distributions of transferrin ions upon acid-induced protein unfolding in the presence and in the absence of the metal in solution. The anomalous instability of the transferrin-bismuth complex in the gas phase is rationalized in terms of conformational differences between this form of transferrin and the holo-forms of this protein produced by binding of metals with smaller ionic radii (e.g., Fe3+ and In3+). The large size of Bi3+ ion is likely to prevent formation of a closed conformation (canonical structure of the holo-protein), resulting in a non-native metal coordination. It is suggested that transferrin retains the open conformation (characteristic of the apo-form) upon binding Bi3+, with only two ligands in the metal coordination sphere provided by the protein itself. This suggestion is corroborated by the results of circular dichroism measurements in the near-UV range. Since the cellular consumption of metals in the transferrin cycle critically depends upon recognition of the holo-protein complex by the transferrin receptor, the noncanonical conformation of the transferrin-bismuth complex may explain very inefficient delivery of bismuth to cells even when a high dosage of bismuth-containing drugs is administered for prolonged periods of time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2004.08.009DOI Listing

Publication Analysis

Top Keywords

serum transferrin
12
transferrin-bismuth complex
12
transferrin
9
complex gas
8
gas phase
8
metal coordination
8
metals
6
complex
6
indirect detection
4
detection protein-metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!