The potential ecological impact of exotic terrestrial planarians will be determined in part by their sensory abilities and predatory behavior. It has been suggested that these flatworms may only encounter their earthworm prey by chance, hence restricting the breadth of species they will feed upon and the number of microhabitats in which predator-prey interactions occur. We hypothesized that those flatworms that have already successfully invaded North America (genus Bipalium) actually detect and follow chemical trails of earthworms and possess the behavioral repertoire needed to feed on the prey in a range of microhabitats. We examined: (1) the tendency of Bipalium adventitium to follow chemical trails left by injured and un-injured earthworms; (2) the behavioral repertoire and predatory success of B. adventitium feeding on three earthworm species in subterranean tunnels; and (3) the response of flatworms to the reportedly defensive secretions of the earthworm Eisenia fetida in tunnels. B. adventitium detected and followed trails of earthworm mucus and secretions left by injured and un-injured earthworms. Flatworms followed trails on a range of substrates and pursued and captured three species of earthworms in subterranean tunnels, including individuals many times their mass. Although most behavior exhibited during underground attacks was similar to that reported for surface encounters, the flatworms also behaved in ways that blocked earthworm escape from tunnels. The flatworms were less successful at preying on E. fetida than on Lumbricus rubellus and Lumbricus terrestris in underground tunnels and showed some aversion to the secretions from E. fetida.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.beproc.2004.06.001 | DOI Listing |
Zootaxa
August 2019
Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75005 Paris, France.
Zootaxa
January 2016
Department of Agriculture, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy; Email: unknown.
Introduction of alien species may significantly affect soil ecosystems, through predation or disruption of components of native ecosystems (Winsor et al. 2004; Álvarez-Presas et al. 2014; Justine et al.
View Article and Find Full Text PDFPLoS One
February 2015
Department of Biology, Utah State University, Logan, Utah, United States of America.
The potent neurotoxin tetrodotoxin (TTX) is known from a diverse array of taxa, but is unknown in terrestrial invertebrates. Tetrodotoxin is a low molecular weight compound that acts by blocking voltage-gated sodium channels, inducing paralysis. However, the origins and ecological functions of TTX in most taxa remain mysterious.
View Article and Find Full Text PDFBehav Processes
November 2004
Department of Biological Sciences, State University of New York College at Cortland, Cortland, NY 13045, USA.
The potential ecological impact of exotic terrestrial planarians will be determined in part by their sensory abilities and predatory behavior. It has been suggested that these flatworms may only encounter their earthworm prey by chance, hence restricting the breadth of species they will feed upon and the number of microhabitats in which predator-prey interactions occur. We hypothesized that those flatworms that have already successfully invaded North America (genus Bipalium) actually detect and follow chemical trails of earthworms and possess the behavioral repertoire needed to feed on the prey in a range of microhabitats.
View Article and Find Full Text PDFThe epidermis of the land planarian Bipalium adventitium was examined by light and electron microscopy. In all regions, the epidermis consists of a simple columnar ciliated epithelium associated with a prominent basement membrane. The epithelial cells, possessing abundant microvilli and poorly developed terminal webs, are conjoined laterally at their apical ends by septate junctions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!