Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.

Adv Microb Physiol

Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland.

Published: November 2004

In certain strictly anaerobic bacteria, the energy for growth is derived entirely from a decarboxylation reaction. A prominent example is Propionigenium modestum, which converts the free energy of the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA (DeltaG degrees =-20.6 kJ/mol) into an electrochemical Na(+) ion gradient across the membrane. This energy source is used as a driving force for ATP synthesis by a Na(+)-translocating F(1)F(0) ATP synthase. According to bioenergetic considerations, approximately four decarboxylation events are necessary to support the synthesis of one ATP. This unique feature of using Na(+) instead of H(+) as the coupling ion has made this ATP synthase the paradigm to study the ion pathway across the membrane and its relationship to rotational catalysis. The membrane potential (Deltapsi) is the key driving force to convert ion translocation through the F(0) motor components into torque. The resulting rotation elicits conformational changes at the catalytic sites of the peripheral F(1) domain which are instrumental for ATP synthesis. Alkaliphilic bacteria also face the challenge of synthesizing ATP at a low electrochemical potential, but for entirely different reasons. Here, the low potential is not the result of insufficient energy input from substrate degradation, but of an inverse pH gradient. This is a consequence of the high environmental pH where these bacteria grow and the necessity to keep the intracellular pH in the neutral range. In spite of this unfavorable bioenergetic condition, ATP synthesis in alkaliphilic bacteria is coupled to the proton motive force (DeltamuH(+)) and not to the much higher sodium motive force (DeltamuNa(+)). A peculiar feature of the ATP synthases of alkaliphiles is the specific inhibition of their ATP hydrolysis activity. This inhibition appears to be an essential strategy for survival at high external pH: if the enzyme were to operate as an ATPase, protons would be pumped outwards to counteract the low DeltamuH(+), thus wasting valuable ATP and compromising acidification of the cytoplasm at alkaline pH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0065-2911(04)49004-3DOI Listing

Publication Analysis

Top Keywords

atp synthesis
12
atp
11
atp synthases
8
low electrochemical
8
electrochemical potential
8
driving force
8
atp synthase
8
synthesis alkaliphilic
8
alkaliphilic bacteria
8
motive force
8

Similar Publications

Glutamine Synthetase: Diverse Regulation and Functions of an Ancient Enzyme.

Biochemistry

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, United States.

Glutamine synthetase (GS) is a ubiquitous enzyme central to nitrogen metabolism, catalyzing the ATP-dependent formation of glutamine from glutamate and ammonia. Positioned at the intersection of nitrogen metabolism with carbon metabolism, the activity of GS is subject to sophisticated regulation. While the intricate regulatory pathways that govern GS were established long ago, recent work has demonstrated that homologues are controlled by multiple distinct regulatory patterns, such as the metabolite induced oligomeric state formation in archaeal GS by 2-oxoglutarate.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the synergistic effects of the chemotherapy drug Carfilzomib (CFZ) and Pistachio hull extract on the SK-BR3 breast cancer cell line.

Methods: In this experimental study, we evaluated the effect of Pistachio hull extract and CFZ as standalone treatments on cell viability using the MTT assay at 24- and 48-hours post-treatment. Following this, we conducted combination therapy analyses to assess the potential synergistic relationship between Pistachio hull extract and CFZ after 24- and 48-hours of treatment on both the SK-BR3 breast cancer cell line and the MCF10A normal cell line.

View Article and Find Full Text PDF

Proteomics and metabolomics analyses of mechanism underlying bovine sperm cryoinjury.

BMC Genomics

January 2025

College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.

Background: The cryoinjury of semen during cryopreservation reduces sperm motility, constraining the application of artificial insemination (AI) in bovine reproduction. Some fertility markers, related to sperm motility before and after freezing have been identified. However, little is known about the biological mechanism through which freezing reduces sperm motility.

View Article and Find Full Text PDF

This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.

View Article and Find Full Text PDF

Microglia and the border-associated macrophages contribute to the modulation of cerebral blood flow, but the mechanisms have remained uncertain. Here, we show that microglia regulate the cerebral blood flow baseline and the responses to whisker stimulation or intra-cisternal magna injection of adenosine triphosphate, but not intra-cisternal magna injection of adenosine in mice model. Notably, microglia repopulation corrects these cerebral blood flow anomalies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!