Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats.

Brain Res

Section on Pharmacology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bldg 10, Rm 2D57, 10 Center Dr, MSC-1514, Bethesda, MD 20892, USA.

Published: November 2004

Peripheral and brain angiotensin II AT(1) receptor blockade decreases high blood pressure, stress, and neuronal injury. To clarify the effects of long-term brain Ang II receptor blockade, the AT(1) blocker, candesartan, was orally administered to spontaneously hypertensive rats (SHRs) for 40 days, followed by intraventricular injection of 25 ng of Ang II. Before Ang II injection, AT(1) receptor blockade normalized blood pressure and decreased plasma adrenocorticotropic hormone (ACTH) and corticosterone. After central administration of excess Ang II, the reduction of ACTH and corticosterone release induced by AT(1) receptor blockade no longer occurred. Central Ang II administration to vehicle-treated SHRs further increased blood pressure, provoked drinking, increased tyrosine hydroxylase (TH) mRNA expression in the locus coeruleus, and stimulated sympathoadrenal catecholamine release. Pretreatment with the AT(1) receptor antagonist eliminated Ang II-induced increases in blood pressure, water intake, and sympathoadrenal catecholamine release; inhibited peripheral and brain AT(1) receptors; increased AT(2) receptor binding in the locus coeruleus, inferior olive, and adrenal cortex; and decreased AT(2) receptor binding in the adrenal medulla. Inhibition of brain AT(1) receptors correlated with decreased TH transcription in the locus coeruleus, indicating a decreased central sympathetic drive. This, and the diminished adrenomedullary AT(1) and AT(2) receptor stimulation, result in decreased sympathoadrenomedullary stimulation. Oral administration of AT(1) antagonists can effectively block central actions of Ang II, regulating blood pressure and reaction to stress, and selectively and differentially modulating sympathoadrenal response and the hypothalamic-pituitary-adrenal stimulation produced by brain Ang II--effects of potential therapeutic importance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.06.079DOI Listing

Publication Analysis

Top Keywords

at1 receptor
20
blood pressure
20
receptor blockade
16
locus coeruleus
12
at2 receptor
12
at1
10
receptor
9
oral administration
8
administration at1
8
receptor antagonist
8

Similar Publications

Background: In patients with diabetes mellitus (DM), vascular endothelial dysfunction (VED) is the main reason for impaired life expectancy. Melatonin (MEL) demonstrates wide-ranging effects across various organs and exhibits pleiotropic characteristics. The current study aims to investigate the modulatory roles of MEL vascular response to angiotensin II (Ang II) and its receptors including angiotensin type 1 receptor (AT-1 R) and angiotensin type 2 receptor (AT-2 R) in isolated thoracic aorta of non-diabetes (non-DM) and diabetes (DM) rats.

View Article and Find Full Text PDF

Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats.

Brain Res Bull

December 2024

Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China. Electronic address:

Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses.

View Article and Find Full Text PDF

Utilizing data from the Vitamin C, Thiamine, and Steroids in Sepsis (VICTAS) Trial, this hub model was developed to limit seventeen Renin-Angiotensin-Aldosterone System (RAAS) components as three entrance and four exits, to facilitate the calculation of a model as one egress unknown, the angiotensin type 1 (AT1) receptor. Following previous evidence relating renin levels to mortality, this study found controls were more like sepsis patients with levels < renin quartile 1 (Q1) for calculated AT1, while more like sepsis patients with renin levels > quartile 3 (Q4) for measured aldosterone levels. Additionally differential discrete correlate summation (DCS) analysis indicates AT1, aldosterone and renin as major hub nodes in this independent DCS model of metabolic data inputs.

View Article and Find Full Text PDF

NMDA receptors in the prefrontal cortex (PFC) play a crucial role in cognitive functions. Previous research has indicated that angiotensin II (Ang II) affects learning and memory. This study aimed to examine how Ang II impacts NMDA receptor activity in layer V pyramidal cells of the rat PFC.

View Article and Find Full Text PDF

Heart failure is a complex syndrome characterized by cardiac hypertrophy, fibrosis, and diastolic/systolic dysfunction. These changes share many pathological features with significant inflammatory responses in the myocardium. Among the various regulatory systems that impact on these heterogeneous pathological processes, angiotensin II (Ang II)-activated macrophages play a pivotal role in the induction of subcellular defects and cardiac adverse remodeling during the progression of heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!