With the aim of checking the validity of methods for characterizing the adhesion between inorganic materials with high surface energies, the properties of the adhesion between an inorganic material (indium tin oxide (ITO)) and model surfaces with various surface energies (Cl-, NH2-, CH(3)-, and CF3-functionalized surfaces) were evaluated using atomic force microscopy (AFM) and the Johnson-Kendall-Roberts (JKR) apparatus. For this purpose, the AFM tip and the JKR lens were modified with ITO using radio frequency (rf) magnetron sputtering. The work of adhesion between the ITO coating and each model surface was estimated using AFM and the JKR apparatus and compared with the result obtained from contact angle measurements. The adhesion forces determined from the force-displacement curves (AFM) were found to agree with the predictions of the Derjaguin-Muller-Toporov (DMT) theory. The JKR equation used in the interpretation of the JKR experiments was modified by taking into account the differences between the surface and bulk moduli of the ITO-coated poly(dimethylsiloxane) (PDMS) lens. The ratio of the surface modulus to the bulk modulus we used in this modified JKR equation was obtained by determining the slope of the attracting part of the force-displacement curve. The values of the work of adhesion calculated using the modified JKR equation were also found to agree with the values obtained from contact angle measurements. We conclude that the two methods using AFM and the JKR apparatus can be used in the evaluation of the work of adhesion between inorganic materials with high surface energies such as metal and metal oxide surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la048403q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!