Modification of aliphatic self-assembled monolayers by free-radical-dominant plasma: the role of the plasma composition.

Langmuir

Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan.

Published: November 2004

Modification of octadecanethiolate self-assembled monolayers on Au by nitrogen-oxygen or argon-oxygen downstream microwave plasma with a low oxygen content (estimated below several percent) has been studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and water contact angle measurements. For both types of plasma, the primary processes were found to be the loss of conformational and orientational order and the oxidation of the alkyl matrix and headgroup-substrate interface. At the same time, the film modification occurred much faster and with different intermediates for the nitrogen plasma than for the argon plasma. The reasons for these differences are considered in terms of the different reactivities and different efficiencies of the energy transfer between the plasma constituents in these two types of plasma.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la040058hDOI Listing

Publication Analysis

Top Keywords

self-assembled monolayers
8
plasma
8
types plasma
8
modification aliphatic
4
aliphatic self-assembled
4
monolayers free-radical-dominant
4
free-radical-dominant plasma
4
plasma role
4
role plasma
4
plasma composition
4

Similar Publications

Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer.

Biosensors (Basel)

December 2024

Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.

Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA).

View Article and Find Full Text PDF

Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.

View Article and Find Full Text PDF

Small-Molecule Hole Transport Materials for >26% Efficient Inverted Perovskite Solar Cells.

J Am Chem Soc

December 2024

Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China.

Chemically modifiable small-molecule hole transport materials (HTMs) hold promise for achieving efficient and scalable perovskite solar cells (PSCs). Compared to emerging self-assembled monolayers, small-molecule HTMs are more reliable in terms of large-area deposition and long-term operational stability. However, current small-molecule HTMs in inverted PSCs lack efficient molecular designs that balance both the charge transport capability and interface compatibility, resulting in a long-standing stagnation of power conversion efficiency (PCE) below 24.

View Article and Find Full Text PDF

Self-Assembled Bolaamphiphile-Based Organic Nanotubes as Efficient Cu(II) Ion Adsorbents.

Langmuir

December 2024

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Self-assembled organic nanotubes (ONTs) have been actively examined for various applications such as chemical separations and catalysis owing to their well-defined tubular nanostructures with distinct chemical environments at the wall and internal/external surfaces. Adsorption of heavy metal ions onto ONTs plays an essential role in many of these applications but has rarely been assessed quantitatively. Herein, we investigated interactions between Cu and single-/quadruple-wall bolaamphiphile-based ONTs having inner carboxyl groups with different inner diameters, COOH-ONT and COOH-ONT.

View Article and Find Full Text PDF

Perovskite solar cells are among the most promising renewable energy devices, and enhancing their stability is crucial for commercialization. This research presents the use of L-Ergothioneine (L-EGT) as a passivation material in perovskite solar cells, strategically placed between the electron transport layer and the perovskite absorber layer to mitigate defect states at the heterojunction interface. Surface analysis reveals that introducing L-EGT passivation material significantly improves the quality of the perovskite film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!