Background: Tilapia are commercially important tropical fish which, like many teleosts, have anatomically discrete islet organs called Brockmann bodies. When transplanted into diabetic nude mice, tilapia islets provide long-term normoglycemia and mammalian-like glucose tolerance profiles.
Methods: Using site-directed mutagenesis and linker ligation we have "humanized" the tilapia insulin gene so that it codes for [desThrB30] human insulin while maintaining the tilapia regulatory sequences. Following microinjection into fertilized eggs, we screened DNA isolated from whole fry shortly after hatching by PCR. Positive fish were grown to sexual maturity and mated to wild-types and positive Fl's were further characterized.
Results: Human insulin was detected in both serum and in the clusters of beta cells scattered throughout the Brockmann bodies. Surrounding non-beta cells as well as other tissues were negative indicating beta cell specific expression. Purification and sequencing of both A-and B-chains verified that the insulin was properly processed and humanized.
Conclusions: After extensive characterization, transgenic tilapia could become a suitable, inexpensive source of islet tissue that can be easily mass-produced for clinical islet xenotransplantation. Because tilapia islets are exceedingly resistant to hypoxia by mammalian standards, transgenic tilapia islets should be ideal for xenotransplantation using immunoisolation techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:trag.0000040036.11109.ee | DOI Listing |
Sci Rep
January 2025
Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan.
Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare).
View Article and Find Full Text PDFMar Biotechnol (NY)
December 2024
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway.
This study facilitates design of expression vectors and lentivirus tools for gene editing of Atlantic salmon. We have characterized widely used heterologous promoters and novel endogenous promoters in Atlantic salmon cells. We used qPCR to evaluate the activity of several U6 promoters for sgRNA expression, including human U6 (hU6), tilapia U6 (tU6), mouse U6 (mU6), zebrafish U6 (zU6), Atlantic salmon U6 (sU6), medaka U6 (medU6), and fugu U6 (fU6) promoters.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2024
Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
The manipulation of the somatotropic axis, governing growth, has been a focus of numerous transgenic approaches aimed at developing fast-growing fish for research, medicine and aquaculture purposes. However, the excessively high growth hormone (GH) levels in these transgenic fish often result in deformities that impact both fish health and consumer acceptance. In an effort to mitigate these issues and synchronize exogenous GH expression with reproductive processes, we employed a novel transgenic construct driven by a tilapia luteinizing hormone (LH) promoter.
View Article and Find Full Text PDFCell Biol Int
August 2022
ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India.
Labeo calbasu is an important food fish and candidate species for diversification of carp aquaculture. In the present study, we have established a continuous cell line, designated as L. calbasu fin (LCF), from caudal fin of L.
View Article and Find Full Text PDFMicrob Biotechnol
June 2022
School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
The lactoferricin expressed in Bacillus subtilis is relatively low in yield, making it hard to apply in industrial settings. We constructed a six tandem repeat of lactoferricin cDNA driven by promoter PtrnQ. After transformation, two transformants P245 and P263 possessing a stable inheritance of plasmid and high expression of lactoferricin were selected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!