Bonelike apatite formation on niobium metal treated in aqueous NaOH.

J Mater Sci Mater Med

Faculty of Materials Engineering, Technion, Haifa 32000, Israel.

Published: October 2004

The essential condition for a biomaterial to bond to the living bone is the formation of a biologically active bonelike apatite on its surface. In the present work, it has been demonstrated that chemical treatment can be used to create a calcium phosphate (CaP) surface layer, which might provide the alkali treated Nb metal with bone-bonding capability. Soaking Nb samples in 0.5 M NaOH, at 25 degrees C for 24 h produced a nano-porous approximately 40 nm thick amorphous sodium niobate hydrogel layer on their surface. Immersion in a simulated body fluid (SBF) lead to the deposition of an amorphous calcium phosphate layer on the alkali treated Nb. The formation of calcium phosphate is assumed to be a result of the local pH increase caused by the cathodic reaction of oxygen reduction on the finely porous surface of the alkali-treated metal. The local rise in pH increased the ionic activity product of hydroxyapatite and lead to the precipitation of CaP from SBF that was already supersaturated with respect to the apatite. The formation of a similar CaP layer upon implantation of alkali treated Nb into the human body should promote the bonding of the implant to the surrounding bone. This bone bonding capability could make Nb metal an attractive material for hard tissue replacements.

Download full-text PDF

Source
http://dx.doi.org/10.1023/B:JMSM.0000046388.07961.81DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
alkali treated
12
bonelike apatite
8
apatite formation
8
formation
4
formation niobium
4
metal
4
niobium metal
4
treated
4
metal treated
4

Similar Publications

Background: Leishmaniasis represents a significant parasitic disease with global health implications, and the development of an affordable and effective vaccine could provide a valuable solution. This study aimed to evaluate the immunogenicity of a DNA vaccine targeting Leishmania major specifically based on the Leishmania-activated C kinase (LACK) antigen, utilizing calcium phosphate nanoparticles (CaPNs) and chitosan nanoparticles (ChitNs) as adjuvants.

Methods: Seventy female BALB/c mice, aged 4-6 wk and weighing 20-22 g, were selected and divided into five groups, each consisting of 14 mice.

View Article and Find Full Text PDF

Efficacy of sodium-glucose cotransporter 2 inhibitors for kidney stone prevention in nondiabetic patients is unknown. In a double-blind, placebo-controlled, single-center, crossover phase 2 trial, 53 adults (≥18 and <75 years) with calcium (n = 28) or uric acid (UA; n = 25) kidney stones (at least one previous kidney stone event) without diabetes (HbA1c < 6.5%, no diabetes treatment) were randomized to once daily empagliflozin 25 mg followed by placebo or reverse (2 weeks per treatment).

View Article and Find Full Text PDF

Structural insights into the mechanism of phosphate recognition and transport by XPR1.

Nat Commun

January 2025

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.

XPR1 is the sole protein known to transport inorganic phosphate (Pi) out of cells, a function conserved across species from yeast to mammals. Human XPR1 variants lead to cerebral calcium-phosphate deposition and primary familial brain calcification (PFBC), a hereditary neurodegenerative disorder. Here, we present the cryo-EM structure of human XPR1 in both its Pi-unbound and various Pi-bound states.

View Article and Find Full Text PDF

Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments.

View Article and Find Full Text PDF

: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!