Background: While idiopathic pulmonary fibrosis (IPF) is one of the most common forms of interstitial lung disease, the aetiology of IPF is poorly understood. Familial cases of pulmonary fibrosis suggest a genetic basis for some forms of the disease. Recent reports have linked genetic mutations in surfactant protein C (SFTPC) with familial forms of pulmonary fibrosis, including one large family in which a number of family members were diagnosed with usual interstitial pneumonitis (UIP), the pathological correlate to IPF. Because of this finding in familial cases of pulmonary fibrosis, we searched for SFTPC mutations in a cohort of sporadic cases of UIP and non-specific interstitial pneumonitis (NSIP).

Methods: The gene for SFTPC was sequenced in 89 patients diagnosed with UIP, 46 patients with NSIP, and 104 normal controls.

Results: Ten single nucleotide polymorphisms in the SFTPC sequence were found in IPF patients and not in controls. Only one of these created an exonic change resulting in a change in amino acid sequence. In this case, a T to C substitution resulted in a change in amino acid 73 of the precursor protein from isoleucine to threonine. Of the remaining polymorphisms, one was in the 5' UTR, two were exonic without predicted amino acid sequence changes, and six were intronic. One intronic mutation suggested a potential enhancement of a splicing site.

Conclusions: Mutations in SFTPC are identified infrequently in this patient population. These findings indicate that SFTPC mutations do not contribute to the pathogenesis of IPF in the majority of sporadic cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1746860PMC
http://dx.doi.org/10.1136/thx.2004.026336DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
16
sporadic cases
12
amino acid
12
genetic mutations
8
mutations surfactant
8
surfactant protein
8
familial cases
8
cases pulmonary
8
interstitial pneumonitis
8
sftpc mutations
8

Similar Publications

Radio-immunotherapy has antitumor activity but also causes toxicity, which limits its clinical application. JS-201 is a dual antibody targeting PD-1 and TGF-β signaling. We investigated the antitumour effect of JS-201 combined with radiotherapy and the effect on radiation-induced lung injury (RILI).

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality and limited treatment options. While single-dose bleomycin-induced models are commonly used to investigate the pathogenesis of IPF, they fail to adequately replicate the complex pathological features in human patients, thereby hindering comprehensive investigations. Previous studies utilizing repetitive bleomycin injections have demonstrated a closer resemblance to human IPF pathology; however, the time- and resource-intensive nature of this approach presents significant drawbacks.

View Article and Find Full Text PDF

Background: Improved diagnostic testing (DT) of infections may optimize outcomes for solid organ transplant recipients (SOTR), but a comprehensive analysis is lacking.

Methods: We conducted a systematic literature review across multiple databases, including EMBASE and MEDLINE(R), of studies published between 1 January 2012-11 June 2022, to examine the evidence behind DT in SOTR. Eligibility criteria included the use of conventional diagnostic methods (culture, biomarkers, directed-polymerase chain reaction [PCR]) or advanced molecular diagnostics (broad-range PCR, metagenomics) to diagnose infections in hospitalized SOTR.

View Article and Find Full Text PDF

The left atrium (LA) is pivotal in cardiac hemodynamics, serving as a dynamic indicator of left ventricular (LV) compliance and diastolic function. The LA undergoes structural and functional adaptations in response to hemodynamic stress, infiltrative processes, myocardial injury, and arrhythmic triggers. Remodeling of the LA in response to these stressors directly impacts pulmonary circulation, eventually leading to pulmonary capillary involvement, pulmonary artery hypertension, and eventually right ventricular failure.

View Article and Find Full Text PDF

Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of critically ill COVID-19 and idiopathic pulmonary fibrosis.

HGG Adv

January 2025

Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. Electronic address:

Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!