Cofactor-apoprotein hydrogen bonding in oxidized and fully reduced flavodoxin monitored by trans-hydrogen-bond scalar couplings.

Chembiochem

Institut für Biophysikalische Chemie, Zentrum für Biomolekulare Magnetische Resonanz, Johann Wolfgang Goethe-Universität, Marie Curie-Strasse 9, 60439 Frankfurt am Main, Germany.

Published: November 2004

AI Article Synopsis

  • Hydrogen bonding is crucial for the strong binding of the FMN cofactor in flavodoxins and influences their redox properties.
  • The study used multidimensional heteronuclear NMR spectroscopy to observe these hydrogen bonding interactions in different redox states of Desulfovibrio vulgaris flavodoxin.
  • The findings reveal specific trans-hydrogen-bond couplings and show that both (h)J and regular J coupling constants vary with the redox state, highlighting their relationship with donor-group chemical shifts and donor-acceptor distances.

Article Abstract

Hydrogen bonding plays a key role in the tight binding of the FMN cofactor and the regulation of its redox properties in flavodoxins. Hydrogen bonding interactions can be directly observed in solution by multidimensional heteronuclear NMR spectroscopy through the scalar couplings between donor and acceptor nuclei. Here we report on the detection of intermolecular trans-hydrogen-bond couplings ((h)J) between the flavin ring system and the backbone of Desulfovibrio vulgaris flavodoxin in the oxidized and the two-electron reduced states. For this purpose, experiments are adapted from pulse sequences previously applied to determining (h)J coupling constants in nucleic acid-base pairs and proteins. The resulting (h2)J(N,N), (h4)J(N,N), (h3)J(C,N), and (h1)J(H,N) couplings involve the (15)N(1), (13)C(2), and (15)N(3) nuclei of the pyrimidine moiety of FMN, whereas no such interactions are detectable for (13)C(4) and (15)N(5). Several long-range (15)N-(15)N, (13)C-(15)N, and (1)H-(15)N J-coupling constants within the flavin are obtained as "by-products". The magnitudes of both (h)J and regular J couplings are found to be dependent on the redox state. In general, good correlations between (h)J coupling constants and donor-group (1)H chemical shifts and also crystallographic donor-acceptor distances are observed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200400171DOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
12
scalar couplings
8
coupling constants
8
couplings
5
cofactor-apoprotein hydrogen
4
bonding oxidized
4
oxidized fully
4
fully reduced
4
reduced flavodoxin
4
flavodoxin monitored
4

Similar Publications

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.

View Article and Find Full Text PDF

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Apurinic/Apyrimidinic (AP)-sites are common and highly mutagenic DNA lesions that can arise spontaneously or as intermediates during Base Excision Repair (BER). The enzyme apurinic/apyrimidinic endonuclease 1 (APE1) initiates repair of AP-sites by cleaving the DNA backbone at the AP-site via its endonuclease activity. Here, we investigated the functional role of the APE1 active site residue N174 that contacts the AP-site during catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!