Import of acylcarnitine into mitochondrial matrix through carnitine/acylcarnitine-translocase (CACT) is fundamental for lipid catabolism. To probe the effect of CACT down-expression on lipid metabolism in muscle, human myocytes were stably transfected with CACT-antisense construct. In presence of low concentration of palmitate, transfected cells showed decreased palmitate oxidation and acetyl-carnitine content, increased palmitoyl-carnitine level, and reduced insulin-dependent decrease of fatty acylcarnitine-to-fatty acyl-CoA ratio. The augmented palmitoyl-carnitine synthesis, also in the presence of insulin, could be related to an altered regulation of carnitine-palmitoyl-transferase 1 (CPT 1) by malonyl-CoA, whose synthesis is dependent by the availability of cytosolic acetyl-groups. Indeed, all the described effects were completely overcome by CACT neo-expression by recombinant adenovirus vector or by addition of acetyl-carnitine to cultures. Acetyl-carnitine effect was related to an increase of malonyl-CoA and was abolished by down-expression, via antisense RNA strategy, of acetyl-CoA carboxylase-beta, the mitochondrial membrane enzyme involved in the direct CPT 1 inhibition via malonyl-CoA synthesis. Thus, in our experimental model the modulation of CACT expression has consequences for CPT 1 activity, while the biologic effects of acetyl-carnitine are not associated with a generic supply of energy compounds but to the anaplerotic property of the molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.20239 | DOI Listing |
ACS Pharmacol Transl Sci
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States.
Acetyl coenzyme A (acetyl-CoA), a pivotal regulatory metabolite, is a product of numerous catabolic reactions and a substrate for various anabolic responses. Its role extends to crucial physiological processes, such as glucose homeostasis and free fatty acid utilization. Moreover, acetyl-CoA plays a significant part in reshaping the metabolic microenvironment and influencing the progression of several diseases and conditions, including cancer, insulin resistance, diabetes, heart failure, fear, and neuropathic pain.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.
Mol Biol Rep
December 2024
Translational Genomics Laboratory, COMSATS University Islamabad, Taramri Chock, Park Road, Islamabad, 45550, Pakistan.
Background: Methylmalonic acidemia (MMA), type mut (0) is a rare type of genetic inborn error of metabolism (IEM) that is caused by aberrant malonyl-CoA mutase activity. Diagnosing IEM can be challenging due to its inherited onset and varying degrees of severity.
Methods And Results: In the present study, a consanguineous Pakistani family suspected of IEM was genetically analyzed using whole exome sequencing.
Front Microbiol
December 2024
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
J Agric Food Chem
December 2024
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!