A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell size-dependent and independent proliferation of rodent neuroblastoma x glioma cells. | LitMetric

Cell size-dependent and independent proliferation of rodent neuroblastoma x glioma cells.

J Cell Physiol

Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, Gif-sur-Yvette, France.

Published: April 2005

For decades, the connection between cell size and division has been the subject of controversy. While in yeast, cell size checkpoints coordinate cellular growth with cell-cycle progression, it has been recently shown that large and small Schwann cells proliferate at the same rate (Conlon and Raff, 2003, J Biol 2:7). From this point of view, it is important to know whether normal and tumoral cells are similar. During continuous culture of NG108-15 neuroblastoma x glioma cells, the rate of proliferation, cell size, and external pH changed in parallel. At constant pH, the cell size-proliferation relationship followed a bell-shaped curve, so that proliferation was optimal within a cell volume window. In contrast, external acidification decreased proliferation independently of cell size. Using electrophysiological techniques, we showed that changes in cell size were dependent on both the uptake of nutrients and the passive influx of ions. Furthermore, an increase in cell size was associated with an increase in total proteins/cell. Another way to influence cell growth and proliferation is to alter the activity of the PI-3 kinase and target of rapamycin (TOR) signaling pathway. In NG108-15 cells, pharmacological inhibition of these proteins with LY 294002 and rapamycin respectively decreased proliferation but did not modify cell size. In contrast, aphidicolin treated cells did not proliferate, but they continued to increase in size. Altogether these results indicate that the proliferation of NG108-15 cells is controlled by both cell size-dependent and independent mechanisms that include extracellular pH and PI-3 kinase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20240DOI Listing

Publication Analysis

Top Keywords

cell size
28
cell
12
cell size-dependent
8
size-dependent independent
8
neuroblastoma glioma
8
glioma cells
8
size
8
cells proliferate
8
decreased proliferation
8
pi-3 kinase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!