Oxidative stress is produced under diabetic conditions and is likely involved in progression of pancreatic beta-cell dysfunction found in diabetes. Possibly due to low levels of antioxidant enzyme expressions, beta-cells are vulnerable to oxidative stress. When beta-cell-derived cell lines or isolated rat islets were exposed to oxidative stress, insulin gene expression was markedly decreased. Furthermore, when diabetic C57BL/ KsJ-db/db mice were treated with antioxidants, glucose tolerance was ameliorated. Histological analyses of the pancreata revealed that the beta-cell mass is significantly larger in the mice treated with the antioxidants. The antioxidant treatment also preserved the amounts of insulin content and insulin mRNA. As a possible mechanism underlying the phenomena, expression of pancreatic and duodenal homeobox factor-1 (PDX-1), an important transcription factor for the insulin gene, was more clearly visible in the nuclei of islet cells after the antioxidant treatment. Furthermore, oxidative stress induces nucleocytoplasmic translocation of PDX-1 through activation of the c-Jun N-terminal kinase (JNK) pathway, which leads to suppression of insulin gene expression. Taken together, oxidative stress and consequent activation of the JNK pathway are involved in progression of beta-cell dysfunction found in diabetes, and thus are a therapeutic target for diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1358/dnp.2004.17.7.863704DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
jnk pathway
12
insulin gene
12
therapeutic target
8
target diabetes
8
involved progression
8
beta-cell dysfunction
8
dysfunction diabetes
8
gene expression
8
mice treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!