AI Article Synopsis

Article Abstract

Starting from N-glycosylated eel calcitonin derivatives that contain an N-acetyl-D-glucosamine residue specifically at the 3rd, 14th, 20th or 26th amino acid residue, corresponding glycopeptides with a complex-type oligosaccharide attached to the respective amino acid residue were synthesized by means of a transglycosylation reaction catalyzed by an endo-beta-N-acetylglucosaminidase from Mucor hiemalis . The use of a recombinant enzyme and an excess of a glycosyl donor led to a yield in excess of 60%. Calcitonin derivatives containing truncated oligosaccharides were also prepared via digestion of the complex-type N-glycan with exoglycosidases. Using these N-glycosylated calcitonin derivatives, the effect of carbohydrate structure and glycosylation site on the three-dimensional structure and the biological activity of the peptide were studied. The conformation of the peptide backbone did not change irrespective of the carbohydrate structure or the glycosylation site. However, hypocalcemic activity, calcitonin-receptor binding activity and the biodistribution of the derivatives were affected by the glycosylation and were dependent on both the carbohydrate structure and the glycosylation site. Although the larger oligosaccharides tended to hinder receptor binding, the biodistribution altered by N-glycosylation appeared to enhance the hypocalcemic activity in some cases, and the magnitude of the effect was dependent on the site of glycosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1023/B:GLYC.0000046277.92806.74DOI Listing

Publication Analysis

Top Keywords

calcitonin derivatives
16
carbohydrate structure
12
structure glycosylation
12
glycosylation site
12
n-glycosylated eel
8
eel calcitonin
8
amino acid
8
acid residue
8
hypocalcemic activity
8
derivatives
5

Similar Publications

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

STRUCTURAL AND FUNCTIONAL BONE FEATURES IN CHILDREN RESIDING IN THE RADIOLOGICALLY CONTAMINATED TERRITORIES OF UKRAINE.

Probl Radiac Med Radiobiol

December 2024

State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.

Objective: Evaluation of structural features and metabolic/biochemical abnormalities of the bone tissue and relevant regulation patterns in children, residing in the radiologically contaminated territories (RCT).

Materials And Methods: Children (n = 148) aged 7 to 18 years old were involved in the study. Bone mineral density (BMD) is given in 3 grades according to the mean square deviation values, namely Grade I - standard (n = 75),Grade II - reduced (n = 45) and Grade III - very low one (n = 28).

View Article and Find Full Text PDF

Opioids/non-steroidal anti-inflammatory drugs are used to alleviate pain; however, they are expensive and can have adverse effects, especially when used over extended periods. Therefore, there is immense demand for innovative, non-addictive analgesics. Here, we report a novel plant-derived central anti-nociceptive agent, Liparis nervosa (Thunb.

View Article and Find Full Text PDF

Recent studies have linked pain and the resultant nociception-induced neural inflammation (NINI) to trauma-induced heterotopic ossification (THO). It is postulated that nociception at the injury site stimulates the transient receptor potential vanilloid-1 (the transient receptor potential cation channel subfamily V member 1) receptors on sensory nerves within the injured tissues resulting in the expression of neuroinflammatory peptides, substance P (SP), and calcitonin gene-related peptide (CGRP). Additionally, BMP-2 released from fractured bones and soft tissue injury also selectively activates TRVP1 receptors, resulting in the release of SP and CGRP and causing neuroinflammation and degranulation of mast cells causing the breakdown the blood-nerve barrier (BNB), leading to release of neural crest derived progenitor cells (NCDPCs) into the injured tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!