Meiotic chromosome synapsis in yeast can occur without spo11-induced DNA double-strand breaks.

Genetics

Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden.

Published: October 2004

Proper chromosome segregation and formation of viable gametes depend on synapsis and recombination between homologous chromosomes during meiosis. Previous reports have shown that the synaptic structures, the synaptonemal complexes (SCs), do not occur in yeast cells with the SPO11 gene removed. The Spo11 enzyme makes double-strand breaks (DSBs) in the DNA and thereby initiates recombination. The view has thus developed that synapsis in yeast strictly depends on the initiation of recombination. Synapsis in some other species (Drosophila melanogaster and Caenorhabditis elegans) is independent of recombination events, and SCs are found in spo11 mutants. This difference between species led us to reexamine spo11 deletion mutants of yeast. Using antibodies against Zip1, a SC component, we found that a small fraction (1%) of the spo11 null mutant cells can indeed form wild-type-like SCs. We further looked for synapsis in a spo11 mutant strain that accumulates pachytene cells (spo11Delta ndt80Delta), and found that the frequency of cells with apparently complete SC formation was 10%. Other phenotypic criteria, such as spore viability and homologous chromosome juxtaposition measured by FISH labeling of chromosomal markers, agree with several previous reports of the spo11 mutant. Our results demonstrate that although the Spo11-induced DSBs obviously promote synapsis in yeast, the presence of Spo11 is not an absolute requirement for synapsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1448848PMC
http://dx.doi.org/10.1534/genetics.104.029660DOI Listing

Publication Analysis

Top Keywords

synapsis yeast
12
double-strand breaks
8
previous reports
8
spo11
8
spo11 mutant
8
synapsis
7
yeast
5
meiotic chromosome
4
chromosome synapsis
4
yeast occur
4

Similar Publications

Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet.

View Article and Find Full Text PDF

Entry of Enveloped Viruses into Host Cells: Membrane Fusion.

Subcell Biochem

December 2024

Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.

Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.

View Article and Find Full Text PDF

Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.

View Article and Find Full Text PDF
Article Synopsis
  • The pairing of homologous chromosomes during meiosis is essential for successful sexual reproduction, with the sme2 RNA playing a crucial role in facilitating this pairing through phase separation.
  • Various RNA-binding proteins aggregate at the sme2 locus, forming complexes necessary for robust homologous chromosome pairing during meiosis.
  • Experiments show that specific RNA species within these protein condensates influence their properties, impacting the physical characteristics that support effective chromosome pairing.
View Article and Find Full Text PDF

Several protein ensembles facilitate crossover recombination and the associated assembly of synaptonemal complex (SC) during meiosis. In yeast, meiosis-specific factors including the DNA helicase Mer3, the "ZZS" complex consisting of Zip4, Zip2, and Spo16, the RING-domain protein Zip3, and the MutSγ heterodimer collaborate with crossover-promoting activity of the SC component, Zip1, to generate crossover-designated recombination intermediates. These ensembles also promote SC formation - the organized assembly of Zip1 with other structural proteins between aligned chromosome axes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!