Hypoxia-inducible factors and hypoxic cell death in tumour physiology.

Ann Med

Cancer Research UK, The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.

Published: July 2005

Hypoxic up-regulation of hypoxia-inducible factors (HIFs) during tumourigenesis presents an interesting paradox with respect to their role in tumour growth. Hypoxia-inducible factor 1 (HIF-1) plays a key role in the adaptive response to hypoxia, trans-activating many genes whose protein products are involved in pathways of angiogenesis, glucose metabolism and cell proliferation, thus facilitating tumour progression. However, it is also emerging that up-regulation of HIF-1 trans-activates anti-proliferative and pro-apoptotic genes (such as BNIP3, NIX and IGFBP3). This makes it unclear as to whether HIF-1 up-regulation provides a selective advantage or disadvantage to neoplastic progression under hypoxia. In addition, vagaries in the hypoxic microenvironment of the tumour such as pH changes, presence of reactive oxygen species and energy availability in the form of adenosine triphosphate (ATP), appear to influence the function of HIF-1 and up-regulated pathways and affect susceptibility to undergo hypoxic cell death. It is apparent that hypoxic cancer cells must be able to select against HIF-1 mediated cell death signals in order to survive and progress towards malignancy. Hypoxia-induced HIF-1 may in itself serve to select for increased malignancy by exerting pressure in the form of anti-proliferative signals that must be escaped. Understanding the mechanisms by which HIF-1 induces cell death and the manner in which the tumour cell can overcome such signals, is critical for our understanding of cancer progression and the development of effective therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07853890410018231DOI Listing

Publication Analysis

Top Keywords

cell death
16
hypoxia-inducible factors
8
hypoxic cell
8
hif-1
7
cell
6
hypoxic
5
tumour
5
factors hypoxic
4
death
4
death tumour
4

Similar Publications

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent form of programmed cell death characterized by excessive lipid hydroperoxides accumulation, emerges as a promising target in cancer therapy. Among the solute carrier (SLC) superfamily, the cystine/glutamate transporter system antiporter components SLC3A2 and SLC7A11 are known to regulate ferroptosis by facilitating cystine import for ferroptosis inhibition. However, the contribution of additional SLC superfamily members to ferroptosis remains poorly understood.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!