Several illnesses expressed somatically that do not have clearly demonstrated pathophysiological origin and that are associated with neuropsychological complaints are reviewed. Among them are nonepileptic seizures, fibromyalgia, chronic fatigue syndrome, Persian Gulf War unexplained illnesses, toxic mold and sick building syndrome, and silicone breast implant disease. Some of these illnesses may be associated with objective cognitive abnormalities, but it is not likely that these abnormalities are caused by traditionally defined neurological disease. Instead, the cognitive abnormalities may be caused by a complex interaction between biological and psychological factors. Nonepileptic seizures serve as an excellent model of medically unexplained symptoms. Although nonepileptic seizures clearly are associated with objective cognitive abnormalities, they are not of neurological origin. There is evidence that severe stressors and PTSD are associated with immune system problems, neurochemical changes, and various diseases; these data blur the distinctions between psychological and organic etiologies. Diagnostic problems are intensified by the fact that many patients are poor historians. Patients are prone to omit history of severe stressors and psychiatric problems, and the inability to talk about stressors increases the likelihood of suffering from physiological forms of stress.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13803390490510095DOI Listing

Publication Analysis

Top Keywords

nonepileptic seizures
12
cognitive abnormalities
12
medically unexplained
8
unexplained symptoms
8
associated objective
8
objective cognitive
8
abnormalities caused
8
severe stressors
8
symptoms neuropsychological
4
neuropsychological assessment
4

Similar Publications

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF

Anti-NMDA (N-methyl-D-aspartate) receptor encephalitis (ANRE) is a rare autoimmune condition targeting brain receptors, often linked to ovarian tumors in young women. In severe cases, it can lead to status epilepticus, but in sporadic cases, it may progress to super-refractory status epilepticus (SRSE), a dangerous state of continuous or repetitive seizures demanding urgent medical attention that continues or recurs more than 24 hours after the initiation of anesthetic therapy. We present a case report of anti-NMDA receptor limbic encephalitis-triggered SRSE terminated with vagus nerve stimulation (VNS) and titrated to high stimulation parameters in the immediate postoperative period.

View Article and Find Full Text PDF

We report a case of optic neuritis (ON) secondary to autoimmune encephalitis (AE) in a patient with concomitant antibodies to N-methyl-D-aspartate receptor (NMDAR), gamma-aminobutyric acid-B receptor (GABAR), and myelin oligodendrocyte glycoprotein (MOG). The patient exhibited a constellation of symptoms, including vision loss, seizures, mental and behavioral disorders, cognitive impairment, and speech abnormalities. At the two-year follow-up, the patient's symptoms had abated entirely.

View Article and Find Full Text PDF

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!