We examined the effects of centrally administered neuromedin U (NMU) on corticotrophin-releasing factor (CRF)-containing neurons in the hypothalamic paraventricular nucleus (PVN) of rats, using double immunohistochemistry for CRF and Fos. Almost all CRF-containing neurons in the parvocellular divisions of the PVN expressed Fos-like immunoreactivity 90 min after intracerebroventricular administration of NMU (3 nmol/rat). This results suggest the possibility that central NMU may be involved in stress-induced activation of CRF-containing neurons in the PVN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10253890410001727370 | DOI Listing |
Neuropsychopharmacology
October 2024
Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely distributed in the brain including the hypothalamic paraventricular nucleus (PVN) implying a regulatory role in stress function. Recent evidence indicates that one of the main targets of PACAP within the PVN are corticotropin-releasing factor (CRF) neurons, which are key regulators of the hypothalamic-pituitary-adrenal (HPA) axis. However, the neural correlates that mediate PACAP effects on stress function are not fully understood.
View Article and Find Full Text PDFBiol Psychiatry
August 2024
Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota. Electronic address:
Background: The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin-releasing factor (CRF) has been previously documented.
View Article and Find Full Text PDFBackground: The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin releasing factor (CRF) has been previously documented.
View Article and Find Full Text PDFNeurobiol Stress
July 2024
Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
Chronic ethanol dependence and withdrawal activate corticotropin releasing factor (CRF)-containing GABAergic neurons in the medial prefrontal cortex (mPFC), which tightly regulate glutamatergic pyramidal neurons. Using male CRF1:GFP reporter mice, we recently reported that CRF1-expressing (mPFC) neurons predominantly comprise mPFC prelimbic layer 2/3 pyramidal neurons, undergo profound adaptations following chronic ethanol exposure, and regulate anxiety and conditioned rewarding effects of ethanol. To explore the effects of acute and chronic ethanol exposure on glutamate transmission, the impact of chronic alcohol on spine density and morphology, as well as persistent changes in dendritic-related gene expression, we employed whole-cell patch-clamp electrophysiology, diOlistic labeling for dendritic spine analysis, and dendritic gene expression analysis to further characterize mPFC and mPFC prelimbic layer 2/3 pyramidal neurons.
View Article and Find Full Text PDFMol Psychiatry
July 2024
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!