Thermal reactive hazards of HMX with contaminants.

J Hazard Mater

Division of Occupational Safety, Institute of Occupational Safety and Health, Council of Labor Affairs, Executive Yuan, No. 99, Lane 407, Hengke Road, Shijr City, Taipei 221, Taiwan, ROC.

Published: October 2004

In the past, many unexpected runaway accidents occurred in manufacturing processes, involving volatile chemical and explosive storage and transportation. Incompatible product reactions of high explosives must be carefully considered using loss prevention strategies for thermal hazards risk analysis. High explosive reactions vary via environmental changes, contact materials, or process situations, such as onset temperature and shifts in reaction type when high explosives are in contact with contaminants. Therefore, the manufacture and handling of high explosives require the utmost in safety and loss prevention. HMX (cyclotetramethyene tetranitramine) is one kind of high explosive widely used around the world which is stable with high detonation strength properties. In this study, the influences of contaminants on HMX are investigated. The studied contaminants include ferrous chloride tetrahydrate, ferric chloride hexahydrate, acetone solution, acetic acid, and nitric acid. DSC thermal curves and incompatible reaction kinetic evaluations were preformed using iron, chlorine and acid. Organic acetone solution has lesser effects on HMX. Hopefully, this study will lead to improved thermal hazards risk analysis and reduce accidents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2004.08.029DOI Listing

Publication Analysis

Top Keywords

high explosives
12
loss prevention
8
thermal hazards
8
hazards risk
8
risk analysis
8
high explosive
8
acetone solution
8
high
6
thermal
4
thermal reactive
4

Similar Publications

Detection of anomalies in video surveillance plays a key role in ensuring the safety and security of public spaces. The number of surveillance cameras is growing, making it harder to monitor them manually. So, automated systems are needed.

View Article and Find Full Text PDF

Obtaining reliable dynamic mechanical properties through experiments is essential for developing and validating constitutive models in material selection and structural design. This study introduces a dynamic tensile method using a modified M-type specimen loaded by a split Hopkinson pressure bar (SHPB). A closed M-type specimen was thus employed.

View Article and Find Full Text PDF

Discovery-Based Analysis for Chemical Trends in Chromatographic Data Sets Using Alteration Analysis and Two-Dimensional Correlation Analysis.

Anal Chem

January 2025

Los Alamos National Laboratory, Q-5, High Explosives Science and Technology, Los Alamos, New Mexico 87545, United States.

Alteration analysis (ALA), an unsupervised chemometric technique, was evaluated for its ability to discover statistically significant trends in chromatographic data sets. Recently introduced, adoption of ALA has been limited due to uncertainty regarding its sensitivity to minor changes, and there are no rules implementing ALA especially for multivariate data sets such as liquid or gas chromatography coupled to mass spectrometry. Using in-silico data sets, ALA limits of discovery for various signal-to-noises (S/Ns), rates of change across samples, and a number of samples were assessed.

View Article and Find Full Text PDF

Toward Large-Scale Photonic Chips Using Low-Anisotropy Thin-Film Lithium-Tantalate.

Adv Sci (Weinh)

January 2025

College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.

View Article and Find Full Text PDF

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!