Platelet-derived growth factor (PDGF) isoforms and PDGF receptor-alpha are upregulated in fibroproliferative lesions in response to asbestos exposure. To examine the functional role of PDGF in asbestos-induced lung disease, we have evaluated the impact of PDGF-B overexpression in the lung on the development of pulmonary fibrosis induced by asbestos inhalation. Transgenic mice expressing PDGF-B from the surfactant protein C promoter and wild-type C57BL/6 mice were exposed to aerosolized chrysotile asbestos fibers via three different exposure regimens: 3 consecutive days to 9 mg/m(3), once a week for 5 weeks to 12 mg/m(3), or once a week for 8 weeks to 11 mg/m(3). The 3-day exposure did not produce fibroproliferative lesions in SPC-PDGFB or wild-type mice, indicating that PDGF expression did not increase susceptibility to a subthreshold dose of asbestos. Transgenic and wild-type mice subjected to the 5-week exposure protocol exhibited similar fibrogenic lesions histologically 48 hours and 8 weeks postexposure, but lungs from transgenic mice had elevated lung hydroxyproline content 8 weeks postexposure relative to wild-type mice. In addition, SPC-PDGFB transgenic mice developed pronounced thickening of arterioles following the 5-week exposure regimen. Mice exposed to asbestos for 8 weeks and examined 10 months later showed pronounced, diffuse fibrotic lesions of terminal bronchioles and alveolar ducts, but no histological differences between transgenic and nontransgenic mice were observed. These results indicated that PDGF-B overexpression can stimulate increased collagen deposition and vascular smooth muscle hyperplasia following asbestos inhalation and that a limited exposure (8 times) to chrysotile aerosol can produce long-lasting fibrotic lesions. The 8-week exposure regimen provides an animal model that encompasses an important aspect of human asbestosis-i.e., persistence of fibrosis for long periods after cessation of asbestos exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/jenvpathtoxoncol.v23.i4.20 | DOI Listing |
PLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFEndocrinology
January 2025
Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Québec, Canada, G1V 4G2.
Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells which are active during fetal life and adult Leydig cells that are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells.
View Article and Find Full Text PDFSci Adv
January 2025
Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark.
Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Deptrtment of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
Aim: Tissue clearance is a rapidly evolving technology that allows for the three-dimensional imaging of intact biological tissues. Preexisting tissue-clearing techniques, such as Passive Clarity Technique (PACT) and Clear Unobstructed Brain Imaging Cocktails and Computational Analysis (CUBIC), clear tissues adequately but have distinct disadvantages, such as taking extensive time to clear tissues and degradation of endogenous tissue fluorescence. We developed a new tissue-clearing technique combining PACT and CUBIC protocols to map the neural lineages expressing the transient receptor potential vanilloid type 1 (TRPV1) receptor.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
IL-2/IL-2R inhibition improved the prognosis of ischemic stroke by regulating T cells, while the respective contribution of T cells with high/medium/low-affinity IL-2 receptors remained unclear. Single-cell RNA sequencing data of ischemic brain tissue revealed that most of the high-affinity IL-2R would be expressed by CD8 + T cells, especially by a highly-proliferative subset. Interestingly, only the CD8 + T cells with high-affinity IL-2R infiltrated ischemic brain tissues, highly expressing 32 genes (including Cdc20, Cdca3/5, and Asns) and activating 7 signaling pathways (including the interferon-alpha response pathway, a key mediator in the proliferation, migration, and cytotoxicity of CD8 + T cells).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!