The shear bonding strengths of a veneering resin to polished, sandblasted, and retention bead-cast commercially pure titanium (cpTi) plates with and without alkaline treatment were measured before and after thermal cycling. The bonding strengths to polished cpTi with and without alkaline treatment decreased remarkably with thermal cycling (p<0.01). The bonding strength to sandblasted cpTi with alkaline treatment at 5,000 thermal cycles showed no significant differences from those before thermal cycling (p>0.05), and those at 20,000 thermal cycles showed values which were quite small (p<0.01). On the other hand, there were no significant differences in the bonding strengths of veneering resin to retention bead-cast cpTi in all conditions (p>0.05). These results suggested that although alkaline treatment is a simple and effective surface modification technique for titanium improving adhesion to resin due to formation of tight-fine rutile particles, it does not provide sufficient bonding durability for long-period restorations.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.23.424DOI Listing

Publication Analysis

Top Keywords

alkaline treatment
12
veneering resin
8
bonding strengths
8
thermal cycling
8
bonding
4
bonding strength
4
strength durability
4
durability alkaline-treated
4
alkaline-treated titanium
4
titanium veneering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!