The new phenol-imidazole pro-ligands (R)LH react with Co(BF(4))(2).6H(2)O in the presence of Et(3)N to form the corresponding [Co(II)((R)L)(2)] compound (R = Ph (1), PhOMe (2), or Bz (3)). Also, (Bz)LH, reacts with Co(ii) in the presence of Et(3)N and H(2)O(2) to form [Co(III)((Bz)L)(3)](4). The structures of 1.2.5MeCN, 2.2DMF, 3.4MeOH, and 4.4DMF have been determined by X-ray crystallography. 1, 2, and 3 each involve Co(II) bound to two N,O-bidentate ligands with a distorted tetrahedral coordination sphere; 4 involves Co(III) bound to three N,O-bidentate ligands in a mer-N(3)O(3) distorted octahedral geometry. [Co(II)((R)L)(2)](R = Ph or PhOMe) undergo two, one-electron, oxidations. The products of the first oxidation, [1](+) and [2](+), have been synthesised by the chemical oxidation of 1 and 2, respectively; these cations, formulated as [Co(II)((R)L*)((R)L)(2)](+), comprise one phenoxyl radical and one phenolate ligand bound to Co(II) and are the first phenoxyl radical ligand complexes of tetra-coordinated Co(II). 4 undergoes two, one-electron, ligand-based oxidations, the first of which produces [4](+), [Co(III)((Bz)L*)((Bz)L)(2)](+). Unlike [1](+) and [2](+), product of the one-electron oxidation of [Co(II)((Bz)L)(2)], [3](+), is unstable and decomposes to produce [4](+). These studies have demonstrated that the chemical properties of [M(II)((R)L*)((R)L)(2)](+)(M = Co, Cu, Zn) are highly dependent on the nature of both the ligand and the metal centre.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b410934aDOI Listing

Publication Analysis

Top Keywords

phenoxyl radical
12
presence et3n
8
no-bidentate ligands
8
[1]+ [2]+
8
coii
5
phenolate phenoxyl
4
radical complexes
4
complexes coii
4
coii coiii
4
coiii phenol-imidazole
4

Similar Publications

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

Roles of iron (V) and iron (IV) species in ferrate-triggered oxidation of phenolic pollutants and their transformation induced by phenoxyl radical.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Ferrate is a promising oxidizing agent for water treatment. Understanding the reaction characteristics and transformation mechanism of high-valent intermediate irons [Fe(V) and Fe(IV)] remains challenging. Here, we systematically investigated the roles of Fe(VI), Fe(V), and Fe(IV) species for acetaminophen oxidation using reaction kinetics, products, and stoichiometries.

View Article and Find Full Text PDF

The mechanism of alkali to inhibit the organics polymerization in improving the biodegradability of wastewater treated by heat/peroxydisulfate.

Water Res

January 2025

Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China. Electronic address:

High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW).

View Article and Find Full Text PDF
Article Synopsis
  • A series of nickel(II) dihydride complexes were synthesized, using a bis(pyrazolate) ligand, leading to various compounds including μ-sulfido and μ-hydrosulfido complexes.
  • The μ-sulfido complex can be oxidized to form a bridging S-radical, characterized through various spectroscopic methods, showcasing its unique properties.
  • The study highlights the importance of these complexes in understanding proton-coupled electron transfer reactions, relevant to biological systems and catalysis.
View Article and Find Full Text PDF

Understanding Variations in Ferrate Detection through the ABTS Method in the Presence of Electron-Rich Organic Compounds.

Environ Sci Technol

August 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

Article Synopsis
  • Scientists have found that a common method for measuring a chemical called Fe(VI) can be messed up by other substances, making it hard to get accurate results.
  • When certain organic compounds are present, they can interfere with the tests, causing big errors in measurements.
  • A new method using Mn(II) and a different chemical called TMB helps to make measurements of Fe(VI) more accurate and faster, even in tricky conditions like dirty water.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!