The synthesis and structures of chiral N-heterocyclic carbene (NHC)-N-donor complexes of silver(I) and palladium(II) are reported. The X-ray structure of an NHC-imine silver(I) complex [((nPr)CN(CHPh))AgBr](2) exhibits an Ag(2)Br(2) dimer motif where the imine group is not coordinated to the silver atom. Reaction between 2 and [PdCl(2)(MeCN)(2)] gives the palladium(II) complex [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) that contains a chelating NHC-imine ligand as shown by single-crystal X-ray diffraction. Slow hydrolysis of related complexes [(kappa(2)-(nPr)CN(CHPh))PdCl(2)](3) and [(kappa(2)-((Ph)(2)CH)CN(CHPh))PdCl(2)](4) using triethylammonium chloride and water lead to the precipitation of single crystals of insoluble NHC-amino palladium(II) complexes [(kappa(2)-(nPr)CN(H(2)))PdCl(2)](6) and [(kappa(2)-((Ph)(2)CH)CN(H(2)))PdCl(2)](7), respectively. In the solid state, complexes 6 and 7 both exhibit intermolecular hydrogen bonding between chlorine and an amino-hydrogen atom resulting in an infinite chain structure. Substitution of an amino hydrogen for an ethyl group gives the soluble complex [(kappa(2)-(iPr)CN((H)Et))PdCl(2)](12). Reaction between two equivalents of 2 and [PdCl(2)(MeCN)(2)] gives the di-NHC complex [(kappa(1)-(nPr)CN(CHPh))(2)PdCl(2)](5) that does not contain a coordinated imine as shown by single crystal X-ray diffraction. Conproportionation between 5 and an equivalent of [PdCl(2)(MeCN)(2)] to does not occur at temperatures up to 100 degrees C in CD(3)CN.

Download full-text PDF

Source
http://dx.doi.org/10.1039/B408594ADOI Listing

Publication Analysis

Top Keywords

palladiumii complexes
8
chiral n-heterocyclic
8
x-ray diffraction
8
complexes
5
synthesis structure
4
structure reactivity
4
palladiumii
4
reactivity palladiumii
4
complexes chiral
4
n-heterocyclic carbene-imine
4

Similar Publications

Palladium(II) complexes containing andrographolide appended N,O heterocyclic chelators: Investigation of anti-oxidant, anti-cancer and apoptotic activities.

J Inorg Biochem

January 2025

Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India; Centre for Material Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641 021, India. Electronic address:

A series of new Pd(II) complexes were synthesized from the reaction of andrographolide appended hydrazide derivatives with potassium tetrachloropalladate K[PdCl]. The formation of the complexes was confirmed through structural assessments conducted using various spectroscopic techniques. From the spectral studies we confirmed that the ligands coordinated to Pd(II) ion via amine nitrogen and enone oxygen.

View Article and Find Full Text PDF

Transition metal complexes are well-known for their efficient light emission and are promising for applications ranging from bioimaging to light-emitting diodes. In solution, interactions between the metal centers of two complexes become possible and drastically change the photophysical properties. For real-world devices, solid-state materials consisting of these molecules are preferable.

View Article and Find Full Text PDF

Expression of concern for 'Nanocrystalline starch grafted palladium(II) complex for the Mizoroki-Heck reaction' by Sanny Verma , , 2013, , 14454-14459, https://doi.org/10.1039/C3DT51685G.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes.

Eur J Med Chem

December 2024

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:

Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!