Tetrahydrobiopterin (BH4) is a member of the pterin family that has a core structure of pyrazino-2,3-d-pyrimidine rings. Because BH4 is an essential cofactor for the biosynthesis of nitric oxide (a major vasodilator), there is growing interest in BH4 biochemistry in endothelial cells (the cells that line blood vessels). BH4 is synthesized via de novo and salvage pathways from guanosine 5'-triphosphate (GTP) and 7,8-dihydrobiopterin, respectively, in animal cells. GTP cyclohydrolase-I (GTP-CH) is the first and rate-controlling enzyme in the de novo pathway. Available evidence shows that endothelial GTP-CH expression and BH4 synthesis are stimulated by a wide array of nutritional (phenylalanine and arginine), hormonal (insulin and estrogen), immunological (inflammatory cytokines including interleukin [IL]-1, interferon-gamma, and tumor necrosis factor-alpha), therapeutic (statins and cyclosporin A), and endothelium-derived (basic fibroblast growth factor and H2O2) factors. In contrast, glucocorticoids and anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor [TGF]-beta) inhibit endothelial BH4 synthesis. Because BH4 is oxidized to 7,8-dihydrobiopterin and 7,8-dihydropterin at physiological pH, endothelial BH4 homeostasis is regulated by both BH4 synthesis and its oxidation. Vitamin C, folate, and other antioxidants enhance endothelial BH4 bioavailability through chemical stabilization or scavenging of reactive oxygen species, thereby contributing to the maintenance of physiological homeostasis in the endothelium. New knowledge about the cellular and molecular mechanisms for the regulation of endothelial BH4 synthesis and bioavailability is beneficial for developing effective means to prevent and treat cardiovascular disorders, the leading cause of death in developed nations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/CBB:41:3:415 | DOI Listing |
Biomolecules
January 2025
Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.
Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (ME/CFS) is a chronic multisystem disease characterized by severe muscle fatigue, pain, dizziness, and brain fog. The two most common symptoms are post-exertional malaise (PEM) and orthostatic intolerance (OI). ME/CFS patients with OI (ME+OI) suffer from dizziness or faintness due to a sudden drop in blood pressure while maintaining an upright posture.
View Article and Find Full Text PDFJIMD Rep
January 2025
Genetic and Metabolic Division, Pediatrics Department Tawam Hospital Al Ain UAE.
Background: Tetrahydrobiopterin (BH4) deficiencies comprise a group of five neurometabolic disorders caused by five genetic defects responsible for BH4 biosynthesis and regeneration. Their global prevalence remains unknown, and variance exists among different countries.
Aims: To describe clinical, biochemical, molecular genetic data and follow-up of patients with BH4 deficiency seen in Tawam Hospital.
Tremor Other Hyperkinet Mov (N Y)
January 2025
Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
Background: Variants in the gene, encoding guanosine triphosphate cyclohydrolase, are associated with dopa-responsive dystonia (DRD) and are considered risk factors for parkinson's disease.
Methods: Comprehensive neurological assessments documented motor and non-motor symptoms in a Chinese family affected by DRD. Whole-exome sequencing (WES) was employed to identify potential mutations, with key variants confirmed by Sanger sequencing and analyzed for familial co-segregation.
Neurotherapeutics
December 2024
Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Brain Research institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Tetrahydrobiopterin (BH4) expression is normally strictly controlled; however, its intracellular levels increase considerably following nerve damage. GTP cyclohydrolase I (GCH1) plays a crucial role in regulating BH4 concentration, with an upregulation observed in the dorsal root ganglion in cases of neuropathic pain. In this study, we aimed to develop and evaluate the clinical potential of an RNA interference-based adeno-associated virus (AAV) targeting GCH1 across various species to decrease BH4 levels and, consequently, alleviate neuropathic pain symptoms.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!