Na-K-Cl cotransporter isoform 1 (NKCC1) plays an important role in maintenance of intracellular Na+, K+, and Cl- levels in astrocytes. We propose that NKCC1 may contribute to perturbations of ionic homeostasis in astrocytes under ischemic conditions. After 3-8 hr of oxygen and glucose deprivation (OGD), NKCC1-mediated 86Rb influx was significantly increased in astrocytes from NKCC1 wild-type (NKCC1+/+) and heterozygous mutant (NKCC1+/-) mice. Phosphorylated NKCC1 protein was increased in NKCC1+/+ astrocytes at 2 hr of OGD. Two hours of OGD and 1 hr of reoxygenation (OGD/REOX) triggered an 3.6-fold increase in intracellular Na+ concentration ([Na+]i) in NKCC1+/+ astrocytes. Inhibition of NKCC1 activity by bumetanide or ablation of the NKCC1 gene significantly attenuated the rise in [Na+]i. Moreover, NKCC1+/+ astrocytes swelled by 10-30% during 20-60 min of OGD. Either genetic ablation of NKCC1 or inhibition of NKCC1 by bumetanide-attenuated OGD-mediated swelling. An NKCC1-mediated increase in [Na+]i may subsequently affect Ca2+ signaling through the Na+/Ca2+ exchanger (NCX). A rise in [Ca2+]i was detected after OGD/REOX in the presence of a sarcoplasmic-endoplasmic reticulum (ER) Ca2+-ATPase inhibitor thapsigargin. Moreover, OGD/REOX led to a significant increase in Ca2+ release from ER Ca2+ stores. Furthermore, KB-R7943 (2-[2-[4(4-nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate), an inhibitor of reverse-mode operation of NCX, abolished the OGD/REOX-induced enhancement in filling of ER Ca2+ stores. OGD/REOX-mediated Ca2+ accumulation in ER Ca2+ stores was absent when NKCC1 activity was ablated or pharmacologically inhibited. These findings imply that stimulation of NKCC1 activity leads to Na+ accumulation after OGD/REOX and that subsequent reverse-mode operation of NCX contributes to increased Ca2+ accumulation by intracellular Ca2+ stores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730155 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2569-04.2004 | DOI Listing |
PLoS Genet
January 2025
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).
View Article and Find Full Text PDFFoods
December 2024
Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.
Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler chicken (BC). The composite meat samples, which comprise minced breast and thigh without skin from 20 chicken carcasses in a 1:1 (/) ratio, were randomly selected for analysis using the completely randomized design (CRD).
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom.
Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).
Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.
BMC Med
January 2025
Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.
Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.
Am J Physiol Cell Physiol
January 2025
Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.
Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!