Glucose is the most important energy substrate for mammalian blastocysts. Its uptake is mediated by glucose transporters (GLUT). In muscle and adipocyte cells insulin stimulates glucose uptake by activation of the insulin receptor (IR) pathway and translocation of GLUT4. GLUT4 is expressed in bovine preimplantation embryos. A new insulin-responsive isoform, GLUT8, was recently described in mouse blastocysts. Thus, potentially, two insulin-responsive isoforms are expressed in early embryos. The mechanism of insulin action on embryonic cells, however, is still not clear. In the present study expression of IR, GLUT1, 2, 3, 4, 5 and 8 was studied in rabbit preimplantation embryos using RT-PCR, Western blotting and immunohistochemistry. The rabbit mRNA sequences for the complete coding region of IR, GLUT4 and a partial GLUT8 sequence were determined by RACE-PCR and sequencing. GLUT4 was expressed in 3-day-old morulae and in 4- and 6-day-old blastocysts. IR and GLUT8 transcripts were detectable only in blastocysts. Blastocysts also expressed GLUT1 and 3, but not GLUT2 and 5. Transcript numbers of GLUT4 and 8 were higher in trophoblast than in embryoblast cells. Translation of IR, GLUT4 and 8 proteins in blastocysts was confirmed by Western blotting. GLUT4 was localized mainly in the membrane and in the perinuclear region in trophoblast cells while in embryoblast cells its localization was predominantly in the perinuclear cytoplasm. The possible function(s) of two insulin-responsive isoforms, GLUT4 and GLUT8, in rabbit preimplantation embryos needs further investigation. It may not necessarily be linked to insulin-stimulated glucose transport.

Download full-text PDF

Source
http://dx.doi.org/10.1530/rep.1.00203DOI Listing

Publication Analysis

Top Keywords

preimplantation embryos
16
rabbit preimplantation
12
insulin receptor
8
glut4
8
glut4 expressed
8
insulin-responsive isoforms
8
western blotting
8
embryoblast cells
8
blastocysts
6
expressed
5

Similar Publications

A cycle-based model to predict no usable blastocyst formation following cycles of in vitro fertilization in patients with normal ovarian reserve.

Reprod Biol Endocrinol

January 2025

Department of Reproductive Medicine Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, The People's Republic of China.

Objective: This study aimed to develop a predictive model for the risk of no usable blastocyst formation in patients with normal ovarian reserve undergoing IVF.

Methods: The model was derived from 7,901 patients who underwent their first oocyte retrieval and subsequent blastocyst culture, of which 446 cases have no usable blastocysts formed. Univariate regression analyses, least absolute shrinkage and selection operator regression analysis were used to identify the association of patient and cycle characteristics with the presence of no available blastocyst and to create a nomogram.

View Article and Find Full Text PDF

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

Purpose: To evaluate the performance of different embryo transfer (ET) operators in a strictly controlled scenario minimizing potential confounders.

Methods: This single-center retrospective cohort study analyzed vitrified-warmed single euploid top-quality day-5 blastocyst transfers performed in non-obese women at the same IVF center by four equally trained clinicians using a standardized ET technique. These strict inclusion criteria allowed excluding all main confounders on the primary study outcome, namely clinical pregnancy rate (CPR) per ET across different operators.

View Article and Find Full Text PDF

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

A framework for the simulation of individual glycan coordinates to analyze spatial relationships within the glycocalyx.

Front Cell Dev Biol

January 2025

Department of Physics, Faculty of Sciences, FAU Erlangen-Nuremberg, Erlangen, Germany.

The glycocalyx is a dense and dynamic layer of glycosylated species that covers every cell in the human body. It plays crucial roles in various cellular processes in health and disease, such as cancer immune evasion, cancer immune therapy, blastocyst implantation, and functional attenuation of membrane protein diffusion. In addition, alterations in glycocalyx structure may play an important role in ocular surface diseases, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!