ApoE-mediated cholesterol efflux from macrophages: separation of autocrine and paracrine effects.

Am J Physiol Cell Physiol

Department of Pathology, Vanderbilt University Medical Center, 383 Preston Research Bldg., Nashville, TN 37232-6300, USA.

Published: March 2005

Macrophages in the vessel wall secrete high levels of apolipoprotein E (apoE). Cholesterol efflux from macrophages to apoE has been shown to decrease foam cell formation and prevent atherosclerosis. An apoE molecule can mediate cholesterol efflux from the macrophage that originally secreted it (autocrine effect) or from surrounding macrophages (paracrine effect). Traditional methodologies have not been able to separate these serial effects. The novel methodology presented here was developed to separate autocrine and paracrine effects by using a simple mathematical model to interpret the effects of dilution on apoE-mediated cholesterol efflux. Our results show that, at very dilute concentrations, the paracrine effect of apoE is not evident and the autocrine effect becomes the dominant mediator of efflux. However, at saturating concentrations, paracrine apoE causes 80-90% of the apoE-mediated cholesterol efflux, whereas autocrine apoE is responsible for the remaining 10-20%. These results suggest that the relative importance of autocrine and paracrine apoE depends on the size of the local distribution volume, a factor not considered in previous in vitro studies of apoE function. Furthermore, autocrine effects of apoE could be critical in the prevention of foam cell formation in vivo. This novel methodology may be applicable to other types of mixed autocrine/paracrine systems, such as signal transduction systems.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00210.2004DOI Listing

Publication Analysis

Top Keywords

cholesterol efflux
20
apoe-mediated cholesterol
12
autocrine paracrine
12
paracrine apoe
12
apoe
9
efflux macrophages
8
paracrine effects
8
foam cell
8
cell formation
8
novel methodology
8

Similar Publications

Deubiquitinating enzymes (DUBs) are integral regulators of protein stability. Among these, Ubiquitin-specific protease 18 (USP18) has emerged as a potential therapeutic target for heart failure. However, its precise role in atherosclerosis remains to be comprehensively understood.

View Article and Find Full Text PDF

Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism.

View Article and Find Full Text PDF

Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

High apolipoprotein B-containing (apoB-containing) low-density lipoproteins (LDLs) and low apoA1-containing high-density lipoproteins (HDLs) are associated with atherosclerotic cardiovascular diseases. In search of a molecular regulator that could simultaneously and reciprocally control both LDL and HDL levels, we screened a microRNA (miR) library using human hepatoma Huh-7 cells. We identified miR-541-3p that both significantly decreases apoB and increases apoA1 expression by inducing mRNA degradation of 2 different transcription factors, Znf101 and Casz1.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function. Renal ischemia-reperfusion injury (RIRI) is one of the main causes of AKI with the underlying mechanism incompletely clarified. The liver X receptors (LXRs), including LXRα and LXRβ, are members of the nuclear receptor superfamily.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!