In normal cells, cyclin D1 is induced by growth factors and promotes progression through the G(1) phase of the cell cycle. Cyclin D1 is also an oncogene that is thought to act primarily by bypassing the requirement for mitogens during the G(1) phase. Studies of clinical tumors have found that cyclin D1 overexpression is associated with chromosome abnormalities, although a causal effect has not been established in experimental systems. In this study, we found that transient expression of cyclin D1 in normal hepatocytes in vivo triggered dysplastic mitoses, accumulation of supernumerary centrosomes, abnormalities of the mitotic spindle, and marked chromosome changes within several days. This was associated with up-regulation of checkpoint genes p53 and p21 as well as hepatocyte apoptosis in the liver. Transient transfection of cyclin D1 also induced centrosome and mitotic spindle abnormalities in breast epithelial cells, suggesting that this may be a generalized effect. These results indicate that cyclin D1 can induce deregulation of the mitotic apparatus and aneuploidy, effects that could contribute to the role of this oncogene in malignancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M407105200 | DOI Listing |
Curr Biol
December 2024
Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France. Electronic address:
The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry.
View Article and Find Full Text PDFChromosome Res
January 2025
Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
Advanced ovarian cancer often presents with multiple lesions exhibiting varying responses to chemotherapy, highlighting the critical influence of the tumor microenvironment (TME). This study investigates the phenomenon of chemotherapeutic hormesis, wherein low doses of chemotherapeutic agents, such as cisplatin (CDDP) and paclitaxel (PTX), paradoxically stimulate rather than inhibit cancer cell proliferation. Our findings indicate that NOS3 ovarian cancer cells, particularly drug-resistant variants, exhibit enhanced proliferation when exposed to low concentrations of these drugs.
View Article and Find Full Text PDFNat Commun
January 2025
Volastra Therapeutics, New York, NY, USA.
Chromosome instability is a prevalent vulnerability of cancer cells that has yet to be fully exploited therapeutically. To identify genes uniquely essential to chromosomally unstable cells, we mined the Cancer Dependency Map for genes essential in tumor cells with high levels of copy number aberrations. We identify and validate KIF18A, a mitotic kinesin, as a vulnerability of chromosomally unstable cancer cells.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt. Electronic address:
Paclitaxel (PTX) binds to spindle microtubules and inhibits mitotic division leading to cell death. However, its wide distribution, high absorption, and less selectively, minimize its application in cancer clinics. In this study, isolated arabinoxylans were used to encapsulate PTX, and then both were covered by polyethylene glycol conjugated to folic acid (FA), to strengthen its specificity to cancerous cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!